Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Botero
1
75 kgMancebo
4
64 kgPeña
5
65 kgSevilla
6
62 kgDuarte
9
55 kgLaverde
10
63 kgGil Martinez
12
60 kgParra
13
62 kgGutiérrez
17
78 kgGonzález
23
55 kgZapata
27
62 kgWilches
31
56 kgGálviz
40
65 kgPedraza
41
58 kgChadwick
50
75 kgChalapud
53
63 kgRubiano
86
58 kgBeltrán
102
59 kg
1
75 kgMancebo
4
64 kgPeña
5
65 kgSevilla
6
62 kgDuarte
9
55 kgLaverde
10
63 kgGil Martinez
12
60 kgParra
13
62 kgGutiérrez
17
78 kgGonzález
23
55 kgZapata
27
62 kgWilches
31
56 kgGálviz
40
65 kgPedraza
41
58 kgChadwick
50
75 kgChalapud
53
63 kgRubiano
86
58 kgBeltrán
102
59 kg
Weight (KG) →
Result →
78
55
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | BOTERO Santiago | 75 |
4 | MANCEBO Francisco | 64 |
5 | PEÑA Victor Hugo | 65 |
6 | SEVILLA Óscar | 62 |
9 | DUARTE Fabio | 55 |
10 | LAVERDE Luis Felipe | 63 |
12 | GIL MARTINEZ Tomas Aurelio | 60 |
13 | PARRA Iván Ramiro | 62 |
17 | GUTIÉRREZ José Enrique | 78 |
23 | GONZÁLEZ Freddy Excelino | 55 |
27 | ZAPATA Javier de Jesús | 62 |
31 | WILCHES Juan Pablo | 56 |
40 | GÁLVIZ Carlos Johan | 65 |
41 | PEDRAZA Wálter Fernando | 58 |
50 | CHADWICK Glen Alan | 75 |
53 | CHALAPUD Robinson | 63 |
86 | RUBIANO Miguel Angel | 58 |
102 | BELTRÁN Edward | 59 |