Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 128
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Henao
1
61 kgSevilla
2
62 kgAtapuma
6
59 kgParra
11
62 kgOspina
13
62 kgAcevedo
14
63 kgTorres
15
56 kgLaverde
17
63 kgDuarte
23
55 kgSoliz
26
58 kgGonzález
38
55 kgPeña
47
65 kgChalapud
49
63 kgVillegas
59
73 kgPérez
63
68 kgBetancur
64
60 kgQuintana
76
58 kgAlzate
89
74 kgSandoval
91
64 kg
1
61 kgSevilla
2
62 kgAtapuma
6
59 kgParra
11
62 kgOspina
13
62 kgAcevedo
14
63 kgTorres
15
56 kgLaverde
17
63 kgDuarte
23
55 kgSoliz
26
58 kgGonzález
38
55 kgPeña
47
65 kgChalapud
49
63 kgVillegas
59
73 kgPérez
63
68 kgBetancur
64
60 kgQuintana
76
58 kgAlzate
89
74 kgSandoval
91
64 kg
Weight (KG) →
Result →
74
55
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | HENAO Sergio | 61 |
2 | SEVILLA Óscar | 62 |
6 | ATAPUMA Darwin | 59 |
11 | PARRA Iván Ramiro | 62 |
13 | OSPINA Dalivier | 62 |
14 | ACEVEDO Janier | 63 |
15 | TORRES Rodolfo Andrés | 56 |
17 | LAVERDE Luis Felipe | 63 |
23 | DUARTE Fabio | 55 |
26 | SOLIZ Óscar | 58 |
38 | GONZÁLEZ Freddy Excelino | 55 |
47 | PEÑA Victor Hugo | 65 |
49 | CHALAPUD Robinson | 63 |
59 | VILLEGAS Juan Pablo | 73 |
63 | PÉREZ Marlon Alirio | 68 |
64 | BETANCUR Carlos | 60 |
76 | QUINTANA Nairo | 58 |
89 | ALZATE Carlos | 74 |
91 | SANDOVAL Edwin Alexander | 64 |