Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 124
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Henao
1
61 kgParra
5
62 kgAtapuma
6
59 kgSevilla
9
62 kgSoliz
16
58 kgLaverde
17
63 kgOspina
19
62 kgTorres
24
56 kgAcevedo
33
63 kgDuarte
34
55 kgGonzález
42
55 kgPérez
46
68 kgChalapud
54
63 kgAlzate
67
74 kgSandoval
69
64 kgQuintana
70
58 kgBetancur
82
60 kgPeña
93
65 kgVillegas
95
73 kg
1
61 kgParra
5
62 kgAtapuma
6
59 kgSevilla
9
62 kgSoliz
16
58 kgLaverde
17
63 kgOspina
19
62 kgTorres
24
56 kgAcevedo
33
63 kgDuarte
34
55 kgGonzález
42
55 kgPérez
46
68 kgChalapud
54
63 kgAlzate
67
74 kgSandoval
69
64 kgQuintana
70
58 kgBetancur
82
60 kgPeña
93
65 kgVillegas
95
73 kg
Weight (KG) →
Result →
74
55
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | HENAO Sergio | 61 |
5 | PARRA Iván Ramiro | 62 |
6 | ATAPUMA Darwin | 59 |
9 | SEVILLA Óscar | 62 |
16 | SOLIZ Óscar | 58 |
17 | LAVERDE Luis Felipe | 63 |
19 | OSPINA Dalivier | 62 |
24 | TORRES Rodolfo Andrés | 56 |
33 | ACEVEDO Janier | 63 |
34 | DUARTE Fabio | 55 |
42 | GONZÁLEZ Freddy Excelino | 55 |
46 | PÉREZ Marlon Alirio | 68 |
54 | CHALAPUD Robinson | 63 |
67 | ALZATE Carlos | 74 |
69 | SANDOVAL Edwin Alexander | 64 |
70 | QUINTANA Nairo | 58 |
82 | BETANCUR Carlos | 60 |
93 | PEÑA Victor Hugo | 65 |
95 | VILLEGAS Juan Pablo | 73 |