Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Sevilla
2
62 kgPérez
3
68 kgHenao
4
61 kgAcevedo
9
63 kgCárdenas
10
59 kgLaverde
22
63 kgVillegas
29
73 kgGonzález
30
55 kgAtapuma
32
59 kgTorres
34
56 kgOspina
40
62 kgSoliz
42
58 kgParra
45
62 kgChalapud
48
63 kgDuarte
56
55 kgPeña
85
65 kgQuintana
93
58 kgSandoval
102
64 kg
2
62 kgPérez
3
68 kgHenao
4
61 kgAcevedo
9
63 kgCárdenas
10
59 kgLaverde
22
63 kgVillegas
29
73 kgGonzález
30
55 kgAtapuma
32
59 kgTorres
34
56 kgOspina
40
62 kgSoliz
42
58 kgParra
45
62 kgChalapud
48
63 kgDuarte
56
55 kgPeña
85
65 kgQuintana
93
58 kgSandoval
102
64 kg
Weight (KG) →
Result →
73
55
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | SEVILLA Óscar | 62 |
3 | PÉREZ Marlon Alirio | 68 |
4 | HENAO Sergio | 61 |
9 | ACEVEDO Janier | 63 |
10 | CÁRDENAS Félix Rafael | 59 |
22 | LAVERDE Luis Felipe | 63 |
29 | VILLEGAS Juan Pablo | 73 |
30 | GONZÁLEZ Freddy Excelino | 55 |
32 | ATAPUMA Darwin | 59 |
34 | TORRES Rodolfo Andrés | 56 |
40 | OSPINA Dalivier | 62 |
42 | SOLIZ Óscar | 58 |
45 | PARRA Iván Ramiro | 62 |
48 | CHALAPUD Robinson | 63 |
56 | DUARTE Fabio | 55 |
85 | PEÑA Victor Hugo | 65 |
93 | QUINTANA Nairo | 58 |
102 | SANDOVAL Edwin Alexander | 64 |