Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.5 * weight - 175
This means that on average for every extra kilogram weight a rider loses 3.5 positions in the result.
Henao
1
61 kgSevilla
2
62 kgCárdenas
3
59 kgGonzález
6
55 kgParra
8
62 kgAcevedo
9
63 kgOspina
12
62 kgAtapuma
13
59 kgSoliz
28
58 kgTorres
33
56 kgDuarte
37
55 kgLaverde
39
63 kgPeña
46
65 kgVillegas
50
73 kgBetancur
53
60 kgChalapud
64
63 kgQuintana
77
58 kgPérez
87
68 kgSandoval
103
64 kgAlzate
108
74 kg
1
61 kgSevilla
2
62 kgCárdenas
3
59 kgGonzález
6
55 kgParra
8
62 kgAcevedo
9
63 kgOspina
12
62 kgAtapuma
13
59 kgSoliz
28
58 kgTorres
33
56 kgDuarte
37
55 kgLaverde
39
63 kgPeña
46
65 kgVillegas
50
73 kgBetancur
53
60 kgChalapud
64
63 kgQuintana
77
58 kgPérez
87
68 kgSandoval
103
64 kgAlzate
108
74 kg
Weight (KG) →
Result →
74
55
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | HENAO Sergio | 61 |
2 | SEVILLA Óscar | 62 |
3 | CÁRDENAS Félix Rafael | 59 |
6 | GONZÁLEZ Freddy Excelino | 55 |
8 | PARRA Iván Ramiro | 62 |
9 | ACEVEDO Janier | 63 |
12 | OSPINA Dalivier | 62 |
13 | ATAPUMA Darwin | 59 |
28 | SOLIZ Óscar | 58 |
33 | TORRES Rodolfo Andrés | 56 |
37 | DUARTE Fabio | 55 |
39 | LAVERDE Luis Felipe | 63 |
46 | PEÑA Victor Hugo | 65 |
50 | VILLEGAS Juan Pablo | 73 |
53 | BETANCUR Carlos | 60 |
64 | CHALAPUD Robinson | 63 |
77 | QUINTANA Nairo | 58 |
87 | PÉREZ Marlon Alirio | 68 |
103 | SANDOVAL Edwin Alexander | 64 |
108 | ALZATE Carlos | 74 |