Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3 * weight - 142
This means that on average for every extra kilogram weight a rider loses 3 positions in the result.
Duarte
1
55 kgSevilla
2
62 kgCárdenas
3
59 kgHenao
5
61 kgAtapuma
8
59 kgOspina
17
62 kgTorres
21
56 kgAcevedo
23
63 kgLaverde
24
63 kgParra
26
62 kgChalapud
43
63 kgSoliz
51
58 kgPeña
52
65 kgGonzález
57
55 kgVillegas
67
73 kgPérez
73
68 kgBetancur
90
60 kgAlzate
106
74 kgSandoval
107
64 kgQuintana
108
58 kg
1
55 kgSevilla
2
62 kgCárdenas
3
59 kgHenao
5
61 kgAtapuma
8
59 kgOspina
17
62 kgTorres
21
56 kgAcevedo
23
63 kgLaverde
24
63 kgParra
26
62 kgChalapud
43
63 kgSoliz
51
58 kgPeña
52
65 kgGonzález
57
55 kgVillegas
67
73 kgPérez
73
68 kgBetancur
90
60 kgAlzate
106
74 kgSandoval
107
64 kgQuintana
108
58 kg
Weight (KG) →
Result →
74
55
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | DUARTE Fabio | 55 |
2 | SEVILLA Óscar | 62 |
3 | CÁRDENAS Félix Rafael | 59 |
5 | HENAO Sergio | 61 |
8 | ATAPUMA Darwin | 59 |
17 | OSPINA Dalivier | 62 |
21 | TORRES Rodolfo Andrés | 56 |
23 | ACEVEDO Janier | 63 |
24 | LAVERDE Luis Felipe | 63 |
26 | PARRA Iván Ramiro | 62 |
43 | CHALAPUD Robinson | 63 |
51 | SOLIZ Óscar | 58 |
52 | PEÑA Victor Hugo | 65 |
57 | GONZÁLEZ Freddy Excelino | 55 |
67 | VILLEGAS Juan Pablo | 73 |
73 | PÉREZ Marlon Alirio | 68 |
90 | BETANCUR Carlos | 60 |
106 | ALZATE Carlos | 74 |
107 | SANDOVAL Edwin Alexander | 64 |
108 | QUINTANA Nairo | 58 |