Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Guamá
1
61 kgGutiérrez
3
78 kgTorres
5
56 kgRomero
6
55 kgPérez
7
68 kgSoliz
10
58 kgPedraza
11
58 kgHenao
13
61 kgSevilla
14
62 kgCárdenas
15
59 kgChalapud
19
63 kgParedes
30
63 kgVillegas
31
73 kgAcevedo
44
63 kgWilches
45
56 kgPantano
49
61 kgSuarez
66
67 kgAtapuma
68
59 kgPeña
78
65 kgGonzález
81
55 kgSandoval
88
64 kgChaparro
121
54 kg
1
61 kgGutiérrez
3
78 kgTorres
5
56 kgRomero
6
55 kgPérez
7
68 kgSoliz
10
58 kgPedraza
11
58 kgHenao
13
61 kgSevilla
14
62 kgCárdenas
15
59 kgChalapud
19
63 kgParedes
30
63 kgVillegas
31
73 kgAcevedo
44
63 kgWilches
45
56 kgPantano
49
61 kgSuarez
66
67 kgAtapuma
68
59 kgPeña
78
65 kgGonzález
81
55 kgSandoval
88
64 kgChaparro
121
54 kg
Weight (KG) →
Result →
78
54
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | GUAMÁ Byron | 61 |
3 | GUTIÉRREZ José Enrique | 78 |
5 | TORRES Rodolfo Andrés | 56 |
6 | ROMERO Jeffry | 55 |
7 | PÉREZ Marlon Alirio | 68 |
10 | SOLIZ Óscar | 58 |
11 | PEDRAZA Wálter Fernando | 58 |
13 | HENAO Sergio | 61 |
14 | SEVILLA Óscar | 62 |
15 | CÁRDENAS Félix Rafael | 59 |
19 | CHALAPUD Robinson | 63 |
30 | PAREDES Jonathan | 63 |
31 | VILLEGAS Juan Pablo | 73 |
44 | ACEVEDO Janier | 63 |
45 | WILCHES Juan Pablo | 56 |
49 | PANTANO Jarlinson | 61 |
66 | SUAREZ Camilo Andres | 67 |
68 | ATAPUMA Darwin | 59 |
78 | PEÑA Victor Hugo | 65 |
81 | GONZÁLEZ Freddy Excelino | 55 |
88 | SANDOVAL Edwin Alexander | 64 |
121 | CHAPARRO Didier | 54 |