Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 44
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Pantano
1
61 kgRomero
2
55 kgPedraza
5
58 kgChalapud
7
63 kgCárdenas
9
59 kgSevilla
11
62 kgVillegas
13
73 kgGonzález
15
55 kgHenao
19
61 kgSuarez
26
67 kgGuamá
27
61 kgPeña
32
65 kgAtapuma
34
59 kgWilches
39
56 kgTorres
40
56 kgPérez
44
68 kgAcevedo
45
63 kgChaparro
57
54 kgSoliz
65
58 kgParedes
74
63 kgGutiérrez
81
78 kgSandoval
111
64 kg
1
61 kgRomero
2
55 kgPedraza
5
58 kgChalapud
7
63 kgCárdenas
9
59 kgSevilla
11
62 kgVillegas
13
73 kgGonzález
15
55 kgHenao
19
61 kgSuarez
26
67 kgGuamá
27
61 kgPeña
32
65 kgAtapuma
34
59 kgWilches
39
56 kgTorres
40
56 kgPérez
44
68 kgAcevedo
45
63 kgChaparro
57
54 kgSoliz
65
58 kgParedes
74
63 kgGutiérrez
81
78 kgSandoval
111
64 kg
Weight (KG) →
Result →
78
54
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | PANTANO Jarlinson | 61 |
2 | ROMERO Jeffry | 55 |
5 | PEDRAZA Wálter Fernando | 58 |
7 | CHALAPUD Robinson | 63 |
9 | CÁRDENAS Félix Rafael | 59 |
11 | SEVILLA Óscar | 62 |
13 | VILLEGAS Juan Pablo | 73 |
15 | GONZÁLEZ Freddy Excelino | 55 |
19 | HENAO Sergio | 61 |
26 | SUAREZ Camilo Andres | 67 |
27 | GUAMÁ Byron | 61 |
32 | PEÑA Victor Hugo | 65 |
34 | ATAPUMA Darwin | 59 |
39 | WILCHES Juan Pablo | 56 |
40 | TORRES Rodolfo Andrés | 56 |
44 | PÉREZ Marlon Alirio | 68 |
45 | ACEVEDO Janier | 63 |
57 | CHAPARRO Didier | 54 |
65 | SOLIZ Óscar | 58 |
74 | PAREDES Jonathan | 63 |
81 | GUTIÉRREZ José Enrique | 78 |
111 | SANDOVAL Edwin Alexander | 64 |