Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 59
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Sevilla
1
62 kgParra
4
62 kgLaverde
6
63 kgPedraza
12
58 kgTorres
14
56 kgHenao
15
57 kgCárdenas
16
59 kgWilches
22
56 kgSoliz
26
58 kgGuamá
28
61 kgArdila
29
58 kgBeltrán
35
59 kgJaramillo
41
63 kgRamirez
56
69 kgPantoja
71
59 kgPeña
72
65 kgChaparro
83
54 kgSuarez
93
67 kgVelasco
94
58 kgMasciarelli
107
61 kg
1
62 kgParra
4
62 kgLaverde
6
63 kgPedraza
12
58 kgTorres
14
56 kgHenao
15
57 kgCárdenas
16
59 kgWilches
22
56 kgSoliz
26
58 kgGuamá
28
61 kgArdila
29
58 kgBeltrán
35
59 kgJaramillo
41
63 kgRamirez
56
69 kgPantoja
71
59 kgPeña
72
65 kgChaparro
83
54 kgSuarez
93
67 kgVelasco
94
58 kgMasciarelli
107
61 kg
Weight (KG) →
Result →
69
54
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
4 | PARRA Iván Ramiro | 62 |
6 | LAVERDE Luis Felipe | 63 |
12 | PEDRAZA Wálter Fernando | 58 |
14 | TORRES Rodolfo Andrés | 56 |
15 | HENAO Sebastián | 57 |
16 | CÁRDENAS Félix Rafael | 59 |
22 | WILCHES Juan Pablo | 56 |
26 | SOLIZ Óscar | 58 |
28 | GUAMÁ Byron | 61 |
29 | ARDILA Mauricio Alberto | 58 |
35 | BELTRÁN Edward | 59 |
41 | JARAMILLO Daniel | 63 |
56 | RAMIREZ Brayan Steven | 69 |
71 | PANTOJA Darwin Ferney | 59 |
72 | PEÑA Victor Hugo | 65 |
83 | CHAPARRO Didier | 54 |
93 | SUAREZ Camilo Andres | 67 |
94 | VELASCO Henry | 58 |
107 | MASCIARELLI Andrea | 61 |