Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 216
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Guamá
1
61 kgCárdenas
3
59 kgPedraza
6
58 kgSevilla
8
62 kgSuarez
16
67 kgPeña
19
65 kgWilches
25
56 kgJaramillo
29
63 kgArdila
31
58 kgLaverde
32
63 kgParra
45
62 kgTorres
46
56 kgHenao
54
57 kgBeltrán
57
59 kgRamirez
59
69 kgSoliz
60
58 kgPantoja
77
59 kgChaparro
83
54 kgVelasco
86
58 kgMasciarelli
91
61 kgGonzález
108
55 kg
1
61 kgCárdenas
3
59 kgPedraza
6
58 kgSevilla
8
62 kgSuarez
16
67 kgPeña
19
65 kgWilches
25
56 kgJaramillo
29
63 kgArdila
31
58 kgLaverde
32
63 kgParra
45
62 kgTorres
46
56 kgHenao
54
57 kgBeltrán
57
59 kgRamirez
59
69 kgSoliz
60
58 kgPantoja
77
59 kgChaparro
83
54 kgVelasco
86
58 kgMasciarelli
91
61 kgGonzález
108
55 kg
Weight (KG) →
Result →
69
54
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | GUAMÁ Byron | 61 |
3 | CÁRDENAS Félix Rafael | 59 |
6 | PEDRAZA Wálter Fernando | 58 |
8 | SEVILLA Óscar | 62 |
16 | SUAREZ Camilo Andres | 67 |
19 | PEÑA Victor Hugo | 65 |
25 | WILCHES Juan Pablo | 56 |
29 | JARAMILLO Daniel | 63 |
31 | ARDILA Mauricio Alberto | 58 |
32 | LAVERDE Luis Felipe | 63 |
45 | PARRA Iván Ramiro | 62 |
46 | TORRES Rodolfo Andrés | 56 |
54 | HENAO Sebastián | 57 |
57 | BELTRÁN Edward | 59 |
59 | RAMIREZ Brayan Steven | 69 |
60 | SOLIZ Óscar | 58 |
77 | PANTOJA Darwin Ferney | 59 |
83 | CHAPARRO Didier | 54 |
86 | VELASCO Henry | 58 |
91 | MASCIARELLI Andrea | 61 |
108 | GONZÁLEZ Freddy Excelino | 55 |