Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Laverde
3
63 kgCárdenas
4
59 kgSevilla
6
62 kgPedraza
8
58 kgArdila
9
58 kgWilches
11
56 kgHenao
13
57 kgTorres
14
56 kgParra
19
62 kgSoliz
28
58 kgJaramillo
29
63 kgBeltrán
31
59 kgGuamá
38
61 kgPantoja
39
59 kgRamirez
48
69 kgPeña
67
65 kgGonzález
79
55 kgMasciarelli
81
61 kgSuarez
83
67 kgChaparro
87
54 kgVelasco
97
58 kg
3
63 kgCárdenas
4
59 kgSevilla
6
62 kgPedraza
8
58 kgArdila
9
58 kgWilches
11
56 kgHenao
13
57 kgTorres
14
56 kgParra
19
62 kgSoliz
28
58 kgJaramillo
29
63 kgBeltrán
31
59 kgGuamá
38
61 kgPantoja
39
59 kgRamirez
48
69 kgPeña
67
65 kgGonzález
79
55 kgMasciarelli
81
61 kgSuarez
83
67 kgChaparro
87
54 kgVelasco
97
58 kg
Weight (KG) →
Result →
69
54
3
97
# | Rider | Weight (KG) |
---|---|---|
3 | LAVERDE Luis Felipe | 63 |
4 | CÁRDENAS Félix Rafael | 59 |
6 | SEVILLA Óscar | 62 |
8 | PEDRAZA Wálter Fernando | 58 |
9 | ARDILA Mauricio Alberto | 58 |
11 | WILCHES Juan Pablo | 56 |
13 | HENAO Sebastián | 57 |
14 | TORRES Rodolfo Andrés | 56 |
19 | PARRA Iván Ramiro | 62 |
28 | SOLIZ Óscar | 58 |
29 | JARAMILLO Daniel | 63 |
31 | BELTRÁN Edward | 59 |
38 | GUAMÁ Byron | 61 |
39 | PANTOJA Darwin Ferney | 59 |
48 | RAMIREZ Brayan Steven | 69 |
67 | PEÑA Victor Hugo | 65 |
79 | GONZÁLEZ Freddy Excelino | 55 |
81 | MASCIARELLI Andrea | 61 |
83 | SUAREZ Camilo Andres | 67 |
87 | CHAPARRO Didier | 54 |
97 | VELASCO Henry | 58 |