Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Cárdenas
4
59 kgSevilla
5
62 kgLaverde
6
63 kgParra
11
62 kgHenao
13
57 kgTorres
16
56 kgGuamá
19
61 kgSoliz
20
58 kgPedraza
22
58 kgBeltrán
27
59 kgArdila
28
58 kgJaramillo
30
63 kgWilches
41
56 kgRamirez
49
69 kgVelasco
68
58 kgGonzález
72
55 kgChaparro
75
54 kgPantoja
82
59 kgMasciarelli
86
61 kgPeña
98
65 kgSuarez
103
67 kg
4
59 kgSevilla
5
62 kgLaverde
6
63 kgParra
11
62 kgHenao
13
57 kgTorres
16
56 kgGuamá
19
61 kgSoliz
20
58 kgPedraza
22
58 kgBeltrán
27
59 kgArdila
28
58 kgJaramillo
30
63 kgWilches
41
56 kgRamirez
49
69 kgVelasco
68
58 kgGonzález
72
55 kgChaparro
75
54 kgPantoja
82
59 kgMasciarelli
86
61 kgPeña
98
65 kgSuarez
103
67 kg
Weight (KG) →
Result →
69
54
4
103
# | Rider | Weight (KG) |
---|---|---|
4 | CÁRDENAS Félix Rafael | 59 |
5 | SEVILLA Óscar | 62 |
6 | LAVERDE Luis Felipe | 63 |
11 | PARRA Iván Ramiro | 62 |
13 | HENAO Sebastián | 57 |
16 | TORRES Rodolfo Andrés | 56 |
19 | GUAMÁ Byron | 61 |
20 | SOLIZ Óscar | 58 |
22 | PEDRAZA Wálter Fernando | 58 |
27 | BELTRÁN Edward | 59 |
28 | ARDILA Mauricio Alberto | 58 |
30 | JARAMILLO Daniel | 63 |
41 | WILCHES Juan Pablo | 56 |
49 | RAMIREZ Brayan Steven | 69 |
68 | VELASCO Henry | 58 |
72 | GONZÁLEZ Freddy Excelino | 55 |
75 | CHAPARRO Didier | 54 |
82 | PANTOJA Darwin Ferney | 59 |
86 | MASCIARELLI Andrea | 61 |
98 | PEÑA Victor Hugo | 65 |
103 | SUAREZ Camilo Andres | 67 |