Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 66
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Sevilla
1
62 kgParra
4
62 kgLaverde
10
63 kgPedraza
12
58 kgTorres
14
56 kgHenao
15
57 kgCárdenas
16
59 kgWilches
22
56 kgSoliz
26
58 kgGuamá
28
61 kgArdila
33
58 kgBeltrán
35
59 kgJaramillo
42
63 kgRamirez
57
69 kgPantoja
70
59 kgPeña
74
65 kgChaparro
84
54 kgVelasco
93
58 kgSuarez
95
67 kgMasciarelli
108
61 kg
1
62 kgParra
4
62 kgLaverde
10
63 kgPedraza
12
58 kgTorres
14
56 kgHenao
15
57 kgCárdenas
16
59 kgWilches
22
56 kgSoliz
26
58 kgGuamá
28
61 kgArdila
33
58 kgBeltrán
35
59 kgJaramillo
42
63 kgRamirez
57
69 kgPantoja
70
59 kgPeña
74
65 kgChaparro
84
54 kgVelasco
93
58 kgSuarez
95
67 kgMasciarelli
108
61 kg
Weight (KG) →
Result →
69
54
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
4 | PARRA Iván Ramiro | 62 |
10 | LAVERDE Luis Felipe | 63 |
12 | PEDRAZA Wálter Fernando | 58 |
14 | TORRES Rodolfo Andrés | 56 |
15 | HENAO Sebastián | 57 |
16 | CÁRDENAS Félix Rafael | 59 |
22 | WILCHES Juan Pablo | 56 |
26 | SOLIZ Óscar | 58 |
28 | GUAMÁ Byron | 61 |
33 | ARDILA Mauricio Alberto | 58 |
35 | BELTRÁN Edward | 59 |
42 | JARAMILLO Daniel | 63 |
57 | RAMIREZ Brayan Steven | 69 |
70 | PANTOJA Darwin Ferney | 59 |
74 | PEÑA Victor Hugo | 65 |
84 | CHAPARRO Didier | 54 |
93 | VELASCO Henry | 58 |
95 | SUAREZ Camilo Andres | 67 |
108 | MASCIARELLI Andrea | 61 |