Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 118
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Sevilla
3
62 kgLaverde
4
63 kgParra
5
62 kgPedraza
13
58 kgWilches
15
56 kgHenao
17
57 kgGuamá
18
61 kgSoliz
22
58 kgTorres
23
56 kgPantoja
28
59 kgCárdenas
31
59 kgArdila
34
58 kgJaramillo
41
63 kgBeltrán
46
59 kgSuarez
68
67 kgPeña
77
65 kgChaparro
89
54 kgVelasco
95
58 kgRamirez
109
69 kgMasciarelli
111
61 kg
3
62 kgLaverde
4
63 kgParra
5
62 kgPedraza
13
58 kgWilches
15
56 kgHenao
17
57 kgGuamá
18
61 kgSoliz
22
58 kgTorres
23
56 kgPantoja
28
59 kgCárdenas
31
59 kgArdila
34
58 kgJaramillo
41
63 kgBeltrán
46
59 kgSuarez
68
67 kgPeña
77
65 kgChaparro
89
54 kgVelasco
95
58 kgRamirez
109
69 kgMasciarelli
111
61 kg
Weight (KG) →
Result →
69
54
3
111
# | Rider | Weight (KG) |
---|---|---|
3 | SEVILLA Óscar | 62 |
4 | LAVERDE Luis Felipe | 63 |
5 | PARRA Iván Ramiro | 62 |
13 | PEDRAZA Wálter Fernando | 58 |
15 | WILCHES Juan Pablo | 56 |
17 | HENAO Sebastián | 57 |
18 | GUAMÁ Byron | 61 |
22 | SOLIZ Óscar | 58 |
23 | TORRES Rodolfo Andrés | 56 |
28 | PANTOJA Darwin Ferney | 59 |
31 | CÁRDENAS Félix Rafael | 59 |
34 | ARDILA Mauricio Alberto | 58 |
41 | JARAMILLO Daniel | 63 |
46 | BELTRÁN Edward | 59 |
68 | SUAREZ Camilo Andres | 67 |
77 | PEÑA Victor Hugo | 65 |
89 | CHAPARRO Didier | 54 |
95 | VELASCO Henry | 58 |
109 | RAMIREZ Brayan Steven | 69 |
111 | MASCIARELLI Andrea | 61 |