Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 216
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Sevilla
3
62 kgLaverde
4
63 kgArdila
5
58 kgPeña
10
65 kgCárdenas
11
59 kgRamirez
12
69 kgParra
13
62 kgSuarez
14
67 kgTorres
21
56 kgPedraza
29
58 kgWilches
30
56 kgJaramillo
32
63 kgHenao
33
57 kgBeltrán
41
59 kgGuamá
44
61 kgChaparro
51
54 kgSoliz
71
58 kgVelasco
102
58 kgMasciarelli
111
61 kgPantoja
112
59 kg
3
62 kgLaverde
4
63 kgArdila
5
58 kgPeña
10
65 kgCárdenas
11
59 kgRamirez
12
69 kgParra
13
62 kgSuarez
14
67 kgTorres
21
56 kgPedraza
29
58 kgWilches
30
56 kgJaramillo
32
63 kgHenao
33
57 kgBeltrán
41
59 kgGuamá
44
61 kgChaparro
51
54 kgSoliz
71
58 kgVelasco
102
58 kgMasciarelli
111
61 kgPantoja
112
59 kg
Weight (KG) →
Result →
69
54
3
112
# | Rider | Weight (KG) |
---|---|---|
3 | SEVILLA Óscar | 62 |
4 | LAVERDE Luis Felipe | 63 |
5 | ARDILA Mauricio Alberto | 58 |
10 | PEÑA Victor Hugo | 65 |
11 | CÁRDENAS Félix Rafael | 59 |
12 | RAMIREZ Brayan Steven | 69 |
13 | PARRA Iván Ramiro | 62 |
14 | SUAREZ Camilo Andres | 67 |
21 | TORRES Rodolfo Andrés | 56 |
29 | PEDRAZA Wálter Fernando | 58 |
30 | WILCHES Juan Pablo | 56 |
32 | JARAMILLO Daniel | 63 |
33 | HENAO Sebastián | 57 |
41 | BELTRÁN Edward | 59 |
44 | GUAMÁ Byron | 61 |
51 | CHAPARRO Didier | 54 |
71 | SOLIZ Óscar | 58 |
102 | VELASCO Henry | 58 |
111 | MASCIARELLI Andrea | 61 |
112 | PANTOJA Darwin Ferney | 59 |