Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 26
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Cárdenas
1
59 kgGuamá
3
61 kgLaverde
4
63 kgSevilla
6
62 kgPantoja
8
59 kgParra
13
62 kgJaramillo
18
63 kgWilches
21
56 kgTorres
22
56 kgHenao
28
57 kgPedraza
33
58 kgVelasco
41
58 kgSoliz
45
58 kgBeltrán
55
59 kgGonzález
61
55 kgArdila
63
58 kgRamirez
68
69 kgPeña
84
65 kgSuarez
92
67 kgChaparro
94
54 kgMasciarelli
114
61 kg
1
59 kgGuamá
3
61 kgLaverde
4
63 kgSevilla
6
62 kgPantoja
8
59 kgParra
13
62 kgJaramillo
18
63 kgWilches
21
56 kgTorres
22
56 kgHenao
28
57 kgPedraza
33
58 kgVelasco
41
58 kgSoliz
45
58 kgBeltrán
55
59 kgGonzález
61
55 kgArdila
63
58 kgRamirez
68
69 kgPeña
84
65 kgSuarez
92
67 kgChaparro
94
54 kgMasciarelli
114
61 kg
Weight (KG) →
Result →
69
54
1
114
# | Rider | Weight (KG) |
---|---|---|
1 | CÁRDENAS Félix Rafael | 59 |
3 | GUAMÁ Byron | 61 |
4 | LAVERDE Luis Felipe | 63 |
6 | SEVILLA Óscar | 62 |
8 | PANTOJA Darwin Ferney | 59 |
13 | PARRA Iván Ramiro | 62 |
18 | JARAMILLO Daniel | 63 |
21 | WILCHES Juan Pablo | 56 |
22 | TORRES Rodolfo Andrés | 56 |
28 | HENAO Sebastián | 57 |
33 | PEDRAZA Wálter Fernando | 58 |
41 | VELASCO Henry | 58 |
45 | SOLIZ Óscar | 58 |
55 | BELTRÁN Edward | 59 |
61 | GONZÁLEZ Freddy Excelino | 55 |
63 | ARDILA Mauricio Alberto | 58 |
68 | RAMIREZ Brayan Steven | 69 |
84 | PEÑA Victor Hugo | 65 |
92 | SUAREZ Camilo Andres | 67 |
94 | CHAPARRO Didier | 54 |
114 | MASCIARELLI Andrea | 61 |