Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.3 * weight - 147
This means that on average for every extra kilogram weight a rider loses 3.3 positions in the result.
Sevilla
1
62 kgLaverde
3
63 kgAguirre
9
55 kgChalapud
12
63 kgParra
19
62 kgSuaza
21
66 kgFlórez
22
57 kgOspina
24
62 kgMuñoz
40
57 kgBohórquez
56
68 kgArdila
57
58 kgRomero
69
55 kgOsorio
72
65 kgVargas
87
69 kgRaabe
89
71 kgOchoa
91
61 kgParrinello
107
68 kgSandoval
110
64 kgPeña
114
65 kgYustre
119
58 kgPérez
125
68 kg
1
62 kgLaverde
3
63 kgAguirre
9
55 kgChalapud
12
63 kgParra
19
62 kgSuaza
21
66 kgFlórez
22
57 kgOspina
24
62 kgMuñoz
40
57 kgBohórquez
56
68 kgArdila
57
58 kgRomero
69
55 kgOsorio
72
65 kgVargas
87
69 kgRaabe
89
71 kgOchoa
91
61 kgParrinello
107
68 kgSandoval
110
64 kgPeña
114
65 kgYustre
119
58 kgPérez
125
68 kg
Weight (KG) →
Result →
71
55
1
125
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
3 | LAVERDE Luis Felipe | 63 |
9 | AGUIRRE Hernán Ricardo | 55 |
12 | CHALAPUD Robinson | 63 |
19 | PARRA Iván Ramiro | 62 |
21 | SUAZA Bernardo | 66 |
22 | FLÓREZ Miguel Eduardo | 57 |
24 | OSPINA Dalivier | 62 |
40 | MUÑOZ Daniel | 57 |
56 | BOHÓRQUEZ Hernando | 68 |
57 | ARDILA Mauricio Alberto | 58 |
69 | ROMERO Jeffry | 55 |
72 | OSORIO Juan Felipe | 65 |
87 | VARGAS Walter | 69 |
89 | RAABE Henry | 71 |
91 | OCHOA Diego Antonio | 61 |
107 | PARRINELLO Antonino | 68 |
110 | SANDOVAL Edwin Alexander | 64 |
114 | PEÑA Victor Hugo | 65 |
119 | YUSTRE Kristian Javier | 58 |
125 | PÉREZ Marlon Alirio | 68 |