Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sevilla
1
62 kgVargas
2
69 kgChalapud
2
63 kgArdila
2
58 kgOchoa
5
61 kgSoliz
5
58 kgPérez
6
68 kgParrinello
8
68 kgRaabe
10
71 kgLaverde
12
63 kgParra
13
62 kgRomero
14
55 kgBohórquez
14
68 kgFlórez
14
57 kgAguirre
15
55 kgOrjuela
15
60 kgSuaza
15
66 kgOsorio
15
65 kgMuñoz
15
57 kgYustre
16
58 kgSandoval
17
64 kgPeña
17
65 kgOspina
17
62 kg
1
62 kgVargas
2
69 kgChalapud
2
63 kgArdila
2
58 kgOchoa
5
61 kgSoliz
5
58 kgPérez
6
68 kgParrinello
8
68 kgRaabe
10
71 kgLaverde
12
63 kgParra
13
62 kgRomero
14
55 kgBohórquez
14
68 kgFlórez
14
57 kgAguirre
15
55 kgOrjuela
15
60 kgSuaza
15
66 kgOsorio
15
65 kgMuñoz
15
57 kgYustre
16
58 kgSandoval
17
64 kgPeña
17
65 kgOspina
17
62 kg
Weight (KG) →
Result →
71
55
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
2 | VARGAS Walter | 69 |
2 | CHALAPUD Robinson | 63 |
2 | ARDILA Mauricio Alberto | 58 |
5 | OCHOA Diego Antonio | 61 |
5 | SOLIZ Óscar | 58 |
6 | PÉREZ Marlon Alirio | 68 |
8 | PARRINELLO Antonino | 68 |
10 | RAABE Henry | 71 |
12 | LAVERDE Luis Felipe | 63 |
13 | PARRA Iván Ramiro | 62 |
14 | ROMERO Jeffry | 55 |
14 | BOHÓRQUEZ Hernando | 68 |
14 | FLÓREZ Miguel Eduardo | 57 |
15 | AGUIRRE Hernán Ricardo | 55 |
15 | ORJUELA Fernando | 60 |
15 | SUAZA Bernardo | 66 |
15 | OSORIO Juan Felipe | 65 |
15 | MUÑOZ Daniel | 57 |
16 | YUSTRE Kristian Javier | 58 |
17 | SANDOVAL Edwin Alexander | 64 |
17 | PEÑA Victor Hugo | 65 |
17 | OSPINA Dalivier | 62 |