Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.6 * weight - 161
This means that on average for every extra kilogram weight a rider loses 3.6 positions in the result.
Sevilla
2
62 kgAguirre
5
55 kgFlórez
9
57 kgChalapud
11
63 kgSuaza
13
66 kgLaverde
15
63 kgOspina
23
62 kgOchoa
27
61 kgMuñoz
33
57 kgParra
46
62 kgBohórquez
74
68 kgOsorio
80
65 kgParrinello
85
68 kgSandoval
88
64 kgArdila
93
58 kgRomero
102
55 kgRaabe
113
71 kgVargas
119
69 kgPeña
125
65 kgPérez
129
68 kgYustre
135
58 kg
2
62 kgAguirre
5
55 kgFlórez
9
57 kgChalapud
11
63 kgSuaza
13
66 kgLaverde
15
63 kgOspina
23
62 kgOchoa
27
61 kgMuñoz
33
57 kgParra
46
62 kgBohórquez
74
68 kgOsorio
80
65 kgParrinello
85
68 kgSandoval
88
64 kgArdila
93
58 kgRomero
102
55 kgRaabe
113
71 kgVargas
119
69 kgPeña
125
65 kgPérez
129
68 kgYustre
135
58 kg
Weight (KG) →
Result →
71
55
2
135
# | Rider | Weight (KG) |
---|---|---|
2 | SEVILLA Óscar | 62 |
5 | AGUIRRE Hernán Ricardo | 55 |
9 | FLÓREZ Miguel Eduardo | 57 |
11 | CHALAPUD Robinson | 63 |
13 | SUAZA Bernardo | 66 |
15 | LAVERDE Luis Felipe | 63 |
23 | OSPINA Dalivier | 62 |
27 | OCHOA Diego Antonio | 61 |
33 | MUÑOZ Daniel | 57 |
46 | PARRA Iván Ramiro | 62 |
74 | BOHÓRQUEZ Hernando | 68 |
80 | OSORIO Juan Felipe | 65 |
85 | PARRINELLO Antonino | 68 |
88 | SANDOVAL Edwin Alexander | 64 |
93 | ARDILA Mauricio Alberto | 58 |
102 | ROMERO Jeffry | 55 |
113 | RAABE Henry | 71 |
119 | VARGAS Walter | 69 |
125 | PEÑA Victor Hugo | 65 |
129 | PÉREZ Marlon Alirio | 68 |
135 | YUSTRE Kristian Javier | 58 |