Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.1 * weight - 123
This means that on average for every extra kilogram weight a rider loses 3.1 positions in the result.
Suaza
3
66 kgLaverde
10
63 kgChalapud
12
63 kgAguirre
14
55 kgSevilla
16
62 kgOspina
25
62 kgParra
27
62 kgFlórez
30
57 kgOsorio
54
65 kgRomero
59
55 kgRaabe
78
71 kgArdila
88
58 kgPeña
95
65 kgOchoa
96
61 kgMuñoz
98
57 kgSandoval
101
64 kgParrinello
115
68 kgVargas
123
69 kgPérez
131
68 kgYustre
134
58 kgBohórquez
136
68 kg
3
66 kgLaverde
10
63 kgChalapud
12
63 kgAguirre
14
55 kgSevilla
16
62 kgOspina
25
62 kgParra
27
62 kgFlórez
30
57 kgOsorio
54
65 kgRomero
59
55 kgRaabe
78
71 kgArdila
88
58 kgPeña
95
65 kgOchoa
96
61 kgMuñoz
98
57 kgSandoval
101
64 kgParrinello
115
68 kgVargas
123
69 kgPérez
131
68 kgYustre
134
58 kgBohórquez
136
68 kg
Weight (KG) →
Result →
71
55
3
136
# | Rider | Weight (KG) |
---|---|---|
3 | SUAZA Bernardo | 66 |
10 | LAVERDE Luis Felipe | 63 |
12 | CHALAPUD Robinson | 63 |
14 | AGUIRRE Hernán Ricardo | 55 |
16 | SEVILLA Óscar | 62 |
25 | OSPINA Dalivier | 62 |
27 | PARRA Iván Ramiro | 62 |
30 | FLÓREZ Miguel Eduardo | 57 |
54 | OSORIO Juan Felipe | 65 |
59 | ROMERO Jeffry | 55 |
78 | RAABE Henry | 71 |
88 | ARDILA Mauricio Alberto | 58 |
95 | PEÑA Victor Hugo | 65 |
96 | OCHOA Diego Antonio | 61 |
98 | MUÑOZ Daniel | 57 |
101 | SANDOVAL Edwin Alexander | 64 |
115 | PARRINELLO Antonino | 68 |
123 | VARGAS Walter | 69 |
131 | PÉREZ Marlon Alirio | 68 |
134 | YUSTRE Kristian Javier | 58 |
136 | BOHÓRQUEZ Hernando | 68 |