Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 122
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Laverde
1
63 kgSevilla
2
62 kgChalapud
5
63 kgArdila
8
58 kgAguirre
12
55 kgParra
17
62 kgOspina
29
62 kgSuaza
34
66 kgBohórquez
37
68 kgFlórez
38
57 kgMuñoz
47
57 kgParrinello
50
68 kgVargas
55
69 kgOsorio
63
65 kgYustre
67
58 kgRomero
68
55 kgPeña
81
65 kgOchoa
82
61 kgRaabe
94
71 kgSandoval
107
64 kgPérez
130
68 kg
1
63 kgSevilla
2
62 kgChalapud
5
63 kgArdila
8
58 kgAguirre
12
55 kgParra
17
62 kgOspina
29
62 kgSuaza
34
66 kgBohórquez
37
68 kgFlórez
38
57 kgMuñoz
47
57 kgParrinello
50
68 kgVargas
55
69 kgOsorio
63
65 kgYustre
67
58 kgRomero
68
55 kgPeña
81
65 kgOchoa
82
61 kgRaabe
94
71 kgSandoval
107
64 kgPérez
130
68 kg
Weight (KG) →
Result →
71
55
1
130
# | Rider | Weight (KG) |
---|---|---|
1 | LAVERDE Luis Felipe | 63 |
2 | SEVILLA Óscar | 62 |
5 | CHALAPUD Robinson | 63 |
8 | ARDILA Mauricio Alberto | 58 |
12 | AGUIRRE Hernán Ricardo | 55 |
17 | PARRA Iván Ramiro | 62 |
29 | OSPINA Dalivier | 62 |
34 | SUAZA Bernardo | 66 |
37 | BOHÓRQUEZ Hernando | 68 |
38 | FLÓREZ Miguel Eduardo | 57 |
47 | MUÑOZ Daniel | 57 |
50 | PARRINELLO Antonino | 68 |
55 | VARGAS Walter | 69 |
63 | OSORIO Juan Felipe | 65 |
67 | YUSTRE Kristian Javier | 58 |
68 | ROMERO Jeffry | 55 |
81 | PEÑA Victor Hugo | 65 |
82 | OCHOA Diego Antonio | 61 |
94 | RAABE Henry | 71 |
107 | SANDOVAL Edwin Alexander | 64 |
130 | PÉREZ Marlon Alirio | 68 |