Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 36
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Sevilla
1
62 kgLaverde
3
63 kgAguirre
8
55 kgMuñoz
21
57 kgParra
23
62 kgSuaza
26
66 kgVargas
35
69 kgArdila
39
58 kgOchoa
52
61 kgBohórquez
53
68 kgChalapud
62
63 kgOsorio
71
65 kgFlórez
72
57 kgRaabe
74
71 kgPeña
91
65 kgRomero
98
55 kgOspina
102
62 kgParrinello
106
68 kgYustre
114
58 kgPérez
119
68 kgSandoval
133
64 kg
1
62 kgLaverde
3
63 kgAguirre
8
55 kgMuñoz
21
57 kgParra
23
62 kgSuaza
26
66 kgVargas
35
69 kgArdila
39
58 kgOchoa
52
61 kgBohórquez
53
68 kgChalapud
62
63 kgOsorio
71
65 kgFlórez
72
57 kgRaabe
74
71 kgPeña
91
65 kgRomero
98
55 kgOspina
102
62 kgParrinello
106
68 kgYustre
114
58 kgPérez
119
68 kgSandoval
133
64 kg
Weight (KG) →
Result →
71
55
1
133
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
3 | LAVERDE Luis Felipe | 63 |
8 | AGUIRRE Hernán Ricardo | 55 |
21 | MUÑOZ Daniel | 57 |
23 | PARRA Iván Ramiro | 62 |
26 | SUAZA Bernardo | 66 |
35 | VARGAS Walter | 69 |
39 | ARDILA Mauricio Alberto | 58 |
52 | OCHOA Diego Antonio | 61 |
53 | BOHÓRQUEZ Hernando | 68 |
62 | CHALAPUD Robinson | 63 |
71 | OSORIO Juan Felipe | 65 |
72 | FLÓREZ Miguel Eduardo | 57 |
74 | RAABE Henry | 71 |
91 | PEÑA Victor Hugo | 65 |
98 | ROMERO Jeffry | 55 |
102 | OSPINA Dalivier | 62 |
106 | PARRINELLO Antonino | 68 |
114 | YUSTRE Kristian Javier | 58 |
119 | PÉREZ Marlon Alirio | 68 |
133 | SANDOVAL Edwin Alexander | 64 |