Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.8 * weight - 118
This means that on average for every extra kilogram weight a rider loses 2.8 positions in the result.
Sevilla
1
62 kgLaverde
2
63 kgChalapud
6
63 kgFlórez
13
57 kgParra
15
62 kgSuaza
22
66 kgAguirre
28
55 kgRomero
30
55 kgParrinello
32
68 kgMuñoz
36
57 kgOspina
37
62 kgOchoa
41
61 kgRaabe
53
71 kgSandoval
72
64 kgParedes
82
66 kgOsorio
94
65 kgBohórquez
100
68 kgArdila
122
58 kgVargas
124
69 kgPeña
125
65 kgPérez
129
68 kgYustre
135
58 kg
1
62 kgLaverde
2
63 kgChalapud
6
63 kgFlórez
13
57 kgParra
15
62 kgSuaza
22
66 kgAguirre
28
55 kgRomero
30
55 kgParrinello
32
68 kgMuñoz
36
57 kgOspina
37
62 kgOchoa
41
61 kgRaabe
53
71 kgSandoval
72
64 kgParedes
82
66 kgOsorio
94
65 kgBohórquez
100
68 kgArdila
122
58 kgVargas
124
69 kgPeña
125
65 kgPérez
129
68 kgYustre
135
58 kg
Weight (KG) →
Result →
71
55
1
135
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
2 | LAVERDE Luis Felipe | 63 |
6 | CHALAPUD Robinson | 63 |
13 | FLÓREZ Miguel Eduardo | 57 |
15 | PARRA Iván Ramiro | 62 |
22 | SUAZA Bernardo | 66 |
28 | AGUIRRE Hernán Ricardo | 55 |
30 | ROMERO Jeffry | 55 |
32 | PARRINELLO Antonino | 68 |
36 | MUÑOZ Daniel | 57 |
37 | OSPINA Dalivier | 62 |
41 | OCHOA Diego Antonio | 61 |
53 | RAABE Henry | 71 |
72 | SANDOVAL Edwin Alexander | 64 |
82 | PAREDES Wilmar | 66 |
94 | OSORIO Juan Felipe | 65 |
100 | BOHÓRQUEZ Hernando | 68 |
122 | ARDILA Mauricio Alberto | 58 |
124 | VARGAS Walter | 69 |
125 | PEÑA Victor Hugo | 65 |
129 | PÉREZ Marlon Alirio | 68 |
135 | YUSTRE Kristian Javier | 58 |