Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Contreras
1
68 kgBustamante
2
65 kgOsorio
3
62 kgPira
5
59 kgCamargo
6
65 kgCaicedo
11
62 kgLópez
14
61 kgCadena
18
63 kgHenao
20
61 kgArroyave
21
68 kgQuintero
25
63 kgMuñoz
27
63 kgSanchez
36
55 kgOsorio
37
65 kgOchoa
39
61 kgDuarte
41
55 kgSoto
42
66 kgMcGeough
43
76 kgChaparro
44
54 kgSuaza
45
66 kgLopez
46
56 kg
1
68 kgBustamante
2
65 kgOsorio
3
62 kgPira
5
59 kgCamargo
6
65 kgCaicedo
11
62 kgLópez
14
61 kgCadena
18
63 kgHenao
20
61 kgArroyave
21
68 kgQuintero
25
63 kgMuñoz
27
63 kgSanchez
36
55 kgOsorio
37
65 kgOchoa
39
61 kgDuarte
41
55 kgSoto
42
66 kgMcGeough
43
76 kgChaparro
44
54 kgSuaza
45
66 kgLopez
46
56 kg
Weight (KG) →
Result →
76
54
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | CONTRERAS Rodrigo | 68 |
2 | BUSTAMANTE Adrián | 65 |
3 | OSORIO Alejandro | 62 |
5 | PIRA Yesid Albeiro | 59 |
6 | CAMARGO Diego Andrés | 65 |
11 | CAICEDO Jonathan Klever | 62 |
14 | LÓPEZ Robinson Fabián | 61 |
18 | CADENA Edgar David | 63 |
20 | HENAO Sergio | 61 |
21 | ARROYAVE Daniel | 68 |
25 | QUINTERO Carlos | 63 |
27 | MUÑOZ Cristian Camilo | 63 |
36 | SANCHEZ Mateo | 55 |
37 | OSORIO Juan Felipe | 65 |
39 | OCHOA Diego Antonio | 61 |
41 | DUARTE Fabio | 55 |
42 | SOTO Nelson Andrés | 66 |
43 | MCGEOUGH Cormac | 76 |
44 | CHAPARRO Didier | 54 |
45 | SUAZA Bernardo | 66 |
46 | LOPEZ Juan Carlos | 56 |