Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Chamberlain
1
74 kgSeixas
2
61 kgHaugland
3
74 kgvan der Werff
6
60 kgRemijn
10
68 kgBisiaux
12
58 kgVergouw
15
73 kgHolmes
17
64 kgGualdi
18
61 kgDecomble
19
62 kgSparfel
22
59 kgØrn-Kristoff
23
76 kgvan der Linden
24
73 kgNordhagen
25
59 kgBoussemaere
28
56 kgVlot
33
57 kgWiśniewski
36
68 kgScheldeman
44
66 kgJessen
45
58 kgStokes
47
68 kgHadden
49
68 kgLeu
50
80 kgSierra
52
70 kg
1
74 kgSeixas
2
61 kgHaugland
3
74 kgvan der Werff
6
60 kgRemijn
10
68 kgBisiaux
12
58 kgVergouw
15
73 kgHolmes
17
64 kgGualdi
18
61 kgDecomble
19
62 kgSparfel
22
59 kgØrn-Kristoff
23
76 kgvan der Linden
24
73 kgNordhagen
25
59 kgBoussemaere
28
56 kgVlot
33
57 kgWiśniewski
36
68 kgScheldeman
44
66 kgJessen
45
58 kgStokes
47
68 kgHadden
49
68 kgLeu
50
80 kgSierra
52
70 kg
Weight (KG) →
Result →
80
56
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | CHAMBERLAIN Oscar | 74 |
2 | SEIXAS Paul | 61 |
3 | HAUGLAND Kasper | 74 |
6 | VAN DER WERFF Thom | 60 |
10 | REMIJN Senna | 68 |
12 | BISIAUX Léo | 58 |
15 | VERGOUW Julian | 73 |
17 | HOLMES Wil | 64 |
18 | GUALDI Simone | 61 |
19 | DECOMBLE Maxime | 62 |
22 | SPARFEL Aubin | 59 |
23 | ØRN-KRISTOFF Felix | 76 |
24 | VAN DER LINDEN Sjoerd | 73 |
25 | NORDHAGEN Jørgen | 59 |
28 | BOUSSEMAERE Louic | 56 |
33 | VLOT Mees | 57 |
36 | WIŚNIEWSKI Szymon | 68 |
44 | SCHELDEMAN Xander | 66 |
45 | JESSEN Cohen | 58 |
47 | STOKES Ben | 68 |
49 | HADDEN Nate | 68 |
50 | LEU Richard | 80 |
52 | SIERRA Juan David | 70 |