Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sierra
3
70 kgSeixas
4
61 kgRemijn
5
68 kgHaugland
6
74 kgVergouw
7
73 kgChamberlain
11
74 kgHolmes
14
64 kgBisiaux
16
58 kgNordhagen
18
59 kgØrn-Kristoff
19
76 kgDecomble
20
62 kgGualdi
23
61 kgSparfel
24
59 kgvan der Werff
26
60 kgvan der Linden
27
73 kgBoussemaere
29
56 kgWiśniewski
33
68 kgVlot
36
57 kgHadden
41
68 kgScheldeman
47
66 kgJessen
48
58 kgLeu
49
80 kgStokes
52
68 kg
3
70 kgSeixas
4
61 kgRemijn
5
68 kgHaugland
6
74 kgVergouw
7
73 kgChamberlain
11
74 kgHolmes
14
64 kgBisiaux
16
58 kgNordhagen
18
59 kgØrn-Kristoff
19
76 kgDecomble
20
62 kgGualdi
23
61 kgSparfel
24
59 kgvan der Werff
26
60 kgvan der Linden
27
73 kgBoussemaere
29
56 kgWiśniewski
33
68 kgVlot
36
57 kgHadden
41
68 kgScheldeman
47
66 kgJessen
48
58 kgLeu
49
80 kgStokes
52
68 kg
Weight (KG) →
Result →
80
56
3
52
# | Rider | Weight (KG) |
---|---|---|
3 | SIERRA Juan David | 70 |
4 | SEIXAS Paul | 61 |
5 | REMIJN Senna | 68 |
6 | HAUGLAND Kasper | 74 |
7 | VERGOUW Julian | 73 |
11 | CHAMBERLAIN Oscar | 74 |
14 | HOLMES Wil | 64 |
16 | BISIAUX Léo | 58 |
18 | NORDHAGEN Jørgen | 59 |
19 | ØRN-KRISTOFF Felix | 76 |
20 | DECOMBLE Maxime | 62 |
23 | GUALDI Simone | 61 |
24 | SPARFEL Aubin | 59 |
26 | VAN DER WERFF Thom | 60 |
27 | VAN DER LINDEN Sjoerd | 73 |
29 | BOUSSEMAERE Louic | 56 |
33 | WIŚNIEWSKI Szymon | 68 |
36 | VLOT Mees | 57 |
41 | HADDEN Nate | 68 |
47 | SCHELDEMAN Xander | 66 |
48 | JESSEN Cohen | 58 |
49 | LEU Richard | 80 |
52 | STOKES Ben | 68 |