Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Lambrecht
2
75 kgSavino
3
70 kgDe Schuyteneer
7
74 kgSchwarzbacher
8
72 kgVervenne
9
72 kgLanhove
10
69 kgDe Ceuster
11
76 kgTuka
21
57 kgKonings
24
69 kgDolven
26
74 kgRaccagni Noviero
27
75 kgReinderink
29
59 kgObdržálek
32
65 kgJacques
34
67 kgRiška
35
70 kgRavnøy
37
78 kgHulsmans
43
70 kgSierra
45
70 kgLukeš
46
70 kgLond
50
65 kgSkladan
61
73 kgSoukup
65
71 kg
2
75 kgSavino
3
70 kgDe Schuyteneer
7
74 kgSchwarzbacher
8
72 kgVervenne
9
72 kgLanhove
10
69 kgDe Ceuster
11
76 kgTuka
21
57 kgKonings
24
69 kgDolven
26
74 kgRaccagni Noviero
27
75 kgReinderink
29
59 kgObdržálek
32
65 kgJacques
34
67 kgRiška
35
70 kgRavnøy
37
78 kgHulsmans
43
70 kgSierra
45
70 kgLukeš
46
70 kgLond
50
65 kgSkladan
61
73 kgSoukup
65
71 kg
Weight (KG) →
Result →
78
57
2
65
# | Rider | Weight (KG) |
---|---|---|
2 | LAMBRECHT Michiel | 75 |
3 | SAVINO Federico | 70 |
7 | DE SCHUYTENEER Steffen | 74 |
8 | SCHWARZBACHER Matthias | 72 |
9 | VERVENNE Jonathan | 72 |
10 | LANHOVE Milan | 69 |
11 | DE CEUSTER Milan | 76 |
21 | TUKA Samuel | 57 |
24 | KONINGS Roan | 69 |
26 | DOLVEN Halvor | 74 |
27 | RACCAGNI NOVIERO Andrea | 75 |
29 | REINDERINK Joris | 59 |
32 | OBDRŽÁLEK Tomáš | 65 |
34 | JACQUES Lucas | 67 |
35 | RIŠKA Richard | 70 |
37 | RAVNØY Johan | 78 |
43 | HULSMANS Senne | 70 |
45 | SIERRA Juan David | 70 |
46 | LUKEŠ Jan | 70 |
50 | LOND Daniel | 65 |
61 | SKLADAN Samuel | 73 |
65 | SOUKUP Vojtěch | 71 |