Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
De Schuyteneer
2
74 kgRaccagni Noviero
4
75 kgLambrecht
6
75 kgReinderink
9
59 kgSchwarzbacher
11
72 kgSavino
12
70 kgObdržálek
14
65 kgLanhove
15
69 kgTuka
17
57 kgKonings
18
69 kgSkladan
19
73 kgDe Ceuster
25
76 kgVervenne
31
72 kgRiška
32
70 kgRavnøy
38
78 kgJacques
42
67 kgDolven
45
74 kgLond
51
65 kgLukeš
54
70 kgHulsmans
58
70 kgSierra
67
70 kgSoukup
69
71 kgToftemark
74
73 kg
2
74 kgRaccagni Noviero
4
75 kgLambrecht
6
75 kgReinderink
9
59 kgSchwarzbacher
11
72 kgSavino
12
70 kgObdržálek
14
65 kgLanhove
15
69 kgTuka
17
57 kgKonings
18
69 kgSkladan
19
73 kgDe Ceuster
25
76 kgVervenne
31
72 kgRiška
32
70 kgRavnøy
38
78 kgJacques
42
67 kgDolven
45
74 kgLond
51
65 kgLukeš
54
70 kgHulsmans
58
70 kgSierra
67
70 kgSoukup
69
71 kgToftemark
74
73 kg
Weight (KG) →
Result →
78
57
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | DE SCHUYTENEER Steffen | 74 |
4 | RACCAGNI NOVIERO Andrea | 75 |
6 | LAMBRECHT Michiel | 75 |
9 | REINDERINK Joris | 59 |
11 | SCHWARZBACHER Matthias | 72 |
12 | SAVINO Federico | 70 |
14 | OBDRŽÁLEK Tomáš | 65 |
15 | LANHOVE Milan | 69 |
17 | TUKA Samuel | 57 |
18 | KONINGS Roan | 69 |
19 | SKLADAN Samuel | 73 |
25 | DE CEUSTER Milan | 76 |
31 | VERVENNE Jonathan | 72 |
32 | RIŠKA Richard | 70 |
38 | RAVNØY Johan | 78 |
42 | JACQUES Lucas | 67 |
45 | DOLVEN Halvor | 74 |
51 | LOND Daniel | 65 |
54 | LUKEŠ Jan | 70 |
58 | HULSMANS Senne | 70 |
67 | SIERRA Juan David | 70 |
69 | SOUKUP Vojtěch | 71 |
74 | TOFTEMARK Lucas | 73 |