Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Hulsmans
1
70 kgDe Schuyteneer
3
74 kgSierra
5
70 kgRaccagni Noviero
6
75 kgDolven
8
74 kgLambrecht
9
75 kgReinderink
13
59 kgSchwarzbacher
14
72 kgRavnøy
18
78 kgSavino
20
70 kgLond
21
65 kgLanhove
27
69 kgDe Ceuster
33
76 kgTuka
34
57 kgObdržálek
35
65 kgVervenne
39
72 kgJacques
43
67 kgRiška
45
70 kgKonings
51
69 kgLukeš
54
70 kgSoukup
56
71 kgSkladan
59
73 kg
1
70 kgDe Schuyteneer
3
74 kgSierra
5
70 kgRaccagni Noviero
6
75 kgDolven
8
74 kgLambrecht
9
75 kgReinderink
13
59 kgSchwarzbacher
14
72 kgRavnøy
18
78 kgSavino
20
70 kgLond
21
65 kgLanhove
27
69 kgDe Ceuster
33
76 kgTuka
34
57 kgObdržálek
35
65 kgVervenne
39
72 kgJacques
43
67 kgRiška
45
70 kgKonings
51
69 kgLukeš
54
70 kgSoukup
56
71 kgSkladan
59
73 kg
Weight (KG) →
Result →
78
57
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | HULSMANS Senne | 70 |
3 | DE SCHUYTENEER Steffen | 74 |
5 | SIERRA Juan David | 70 |
6 | RACCAGNI NOVIERO Andrea | 75 |
8 | DOLVEN Halvor | 74 |
9 | LAMBRECHT Michiel | 75 |
13 | REINDERINK Joris | 59 |
14 | SCHWARZBACHER Matthias | 72 |
18 | RAVNØY Johan | 78 |
20 | SAVINO Federico | 70 |
21 | LOND Daniel | 65 |
27 | LANHOVE Milan | 69 |
33 | DE CEUSTER Milan | 76 |
34 | TUKA Samuel | 57 |
35 | OBDRŽÁLEK Tomáš | 65 |
39 | VERVENNE Jonathan | 72 |
43 | JACQUES Lucas | 67 |
45 | RIŠKA Richard | 70 |
51 | KONINGS Roan | 69 |
54 | LUKEŠ Jan | 70 |
56 | SOUKUP Vojtěch | 71 |
59 | SKLADAN Samuel | 73 |