Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
van den Eijnden
4
63 kgMellano
5
65 kgSavino
6
70 kgDelle Vedove
8
73 kgKramer
10
74 kgHansen
11
68 kgHarteel
12
66 kgSentjens
13
85 kgLópez
14
64 kgKonings
15
69 kgOlivo
16
70 kgStiansen
17
67 kgSierra
18
70 kgZanutta
19
57 kgNegrente
22
65 kgAlmutaiwei
25
74 kgGolliker
26
67 kgFontaine
27
70 kgRemijn
29
68 kgToftemark
31
73 kgLukeš
32
70 kg
4
63 kgMellano
5
65 kgSavino
6
70 kgDelle Vedove
8
73 kgKramer
10
74 kgHansen
11
68 kgHarteel
12
66 kgSentjens
13
85 kgLópez
14
64 kgKonings
15
69 kgOlivo
16
70 kgStiansen
17
67 kgSierra
18
70 kgZanutta
19
57 kgNegrente
22
65 kgAlmutaiwei
25
74 kgGolliker
26
67 kgFontaine
27
70 kgRemijn
29
68 kgToftemark
31
73 kgLukeš
32
70 kg
Weight (KG) →
Result →
85
57
4
32
# | Rider | Weight (KG) |
---|---|---|
4 | VAN DEN EIJNDEN Guus | 63 |
5 | MELLANO Ludovico Maria | 65 |
6 | SAVINO Federico | 70 |
8 | DELLE VEDOVE Alessio | 73 |
10 | KRAMER Jesse | 74 |
11 | HANSEN Alexander Arnt | 68 |
12 | HARTEEL Jelle | 66 |
13 | SENTJENS Sente | 85 |
14 | LÓPEZ Ian | 64 |
15 | KONINGS Roan | 69 |
16 | OLIVO Bryan | 70 |
17 | STIANSEN Jesper | 67 |
18 | SIERRA Juan David | 70 |
19 | ZANUTTA David | 57 |
22 | NEGRENTE Mattia | 65 |
25 | ALMUTAIWEI Mohammad | 74 |
26 | GOLLIKER Joshua | 67 |
27 | FONTAINE Titouan | 70 |
29 | REMIJN Senna | 68 |
31 | TOFTEMARK Lucas | 73 |
32 | LUKEŠ Jan | 70 |