Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Ganzar
1
59 kgSierra
2
57 kgDygert
3
66 kgBergen
5
64 kgWilliams
6
66 kgStephens
7
55 kgPitel
9
52 kgPowless
10
59 kgGigante
11
53 kgParra
12
58 kgMullens
15
57 kgBaur
16
56 kgBlais
17
53 kgGarcía
22
68 kgRay
23
53 kgDrummond
24
61 kgBreck
32
59 kgValente
33
73 kgRyan
42
59 kgTeddergreen
44
51 kg
1
59 kgSierra
2
57 kgDygert
3
66 kgBergen
5
64 kgWilliams
6
66 kgStephens
7
55 kgPitel
9
52 kgPowless
10
59 kgGigante
11
53 kgParra
12
58 kgMullens
15
57 kgBaur
16
56 kgBlais
17
53 kgGarcía
22
68 kgRay
23
53 kgDrummond
24
61 kgBreck
32
59 kgValente
33
73 kgRyan
42
59 kgTeddergreen
44
51 kg
Weight (KG) →
Result →
73
51
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | GANZAR Leigh Ann | 59 |
2 | SIERRA Arlenis | 57 |
3 | DYGERT Chloé | 66 |
5 | BERGEN Sara | 64 |
6 | WILLIAMS Lily | 66 |
7 | STEPHENS Lauren | 55 |
9 | PITEL Edwige | 52 |
10 | POWLESS Shayna | 59 |
11 | GIGANTE Sarah | 53 |
12 | PARRA Jessica Marcela | 58 |
15 | MULLENS Peta | 57 |
16 | BAUR Caroline | 56 |
17 | BLAIS Marie-Soleil | 53 |
22 | GARCÍA Danielys del Valle | 68 |
23 | RAY Olivia | 53 |
24 | DRUMMOND Michaela | 61 |
32 | BRECK Holly | 59 |
33 | VALENTE Jennifer | 73 |
42 | RYAN Kendall | 59 |
44 | TEDDERGREEN Starla | 51 |