Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Zijlaard-van Moorsel
1
62 kgMillward
2
56 kgPučinskaitė
3
54 kgZabirova
4
65 kgKupfernagel
5
68 kgArndt
6
59 kgHughes
7
72 kgClignet
11
60 kgRuano
14
51 kgMelchers
23
59 kgStiajkina
24
51 kgMatusiak
25
58 kgLjungskog
26
57 kgBeltman
29
68 kgPezzo
30
58 kgStahurskaya
31
69 kg
1
62 kgMillward
2
56 kgPučinskaitė
3
54 kgZabirova
4
65 kgKupfernagel
5
68 kgArndt
6
59 kgHughes
7
72 kgClignet
11
60 kgRuano
14
51 kgMelchers
23
59 kgStiajkina
24
51 kgMatusiak
25
58 kgLjungskog
26
57 kgBeltman
29
68 kgPezzo
30
58 kgStahurskaya
31
69 kg
Weight (KG) →
Result →
72
51
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | ZIJLAARD-VAN MOORSEL Leontien | 62 |
2 | MILLWARD Anna | 56 |
3 | PUČINSKAITĖ Edita | 54 |
4 | ZABIROVA Zulfiya | 65 |
5 | KUPFERNAGEL Hanka | 68 |
6 | ARNDT Judith | 59 |
7 | HUGHES Clara | 72 |
11 | CLIGNET Marion | 60 |
14 | RUANO Dori | 51 |
23 | MELCHERS Mirjam | 59 |
24 | STIAJKINA Tatiana | 51 |
25 | MATUSIAK Bogumiła | 58 |
26 | LJUNGSKOG Susanne | 57 |
29 | BELTMAN Chantal | 68 |
30 | PEZZO Paola | 58 |
31 | STAHURSKAYA Zinaida | 69 |