Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Arndt
2
59 kgZabirova
3
65 kgRuano
9
51 kgPučinskaitė
10
54 kgPitel
11
52 kgZabelinskaya
12
52 kgArmstrong
13
58 kgMelchers
14
59 kgCarrara
17
64 kgCarrigan
18
60 kgKupfernagel
21
68 kgSoeder
24
52 kgLjungskog
25
57 kgMatusiak
30
58 kgValen
32
62 kgGunnewijk
34
67 kgHouvenaghel
36
60 kg
2
59 kgZabirova
3
65 kgRuano
9
51 kgPučinskaitė
10
54 kgPitel
11
52 kgZabelinskaya
12
52 kgArmstrong
13
58 kgMelchers
14
59 kgCarrara
17
64 kgCarrigan
18
60 kgKupfernagel
21
68 kgSoeder
24
52 kgLjungskog
25
57 kgMatusiak
30
58 kgValen
32
62 kgGunnewijk
34
67 kgHouvenaghel
36
60 kg
Weight (KG) →
Result →
68
51
2
36
# | Rider | Weight (KG) |
---|---|---|
2 | ARNDT Judith | 59 |
3 | ZABIROVA Zulfiya | 65 |
9 | RUANO Dori | 51 |
10 | PUČINSKAITĖ Edita | 54 |
11 | PITEL Edwige | 52 |
12 | ZABELINSKAYA Olga | 52 |
13 | ARMSTRONG Kristin | 58 |
14 | MELCHERS Mirjam | 59 |
17 | CARRARA Vera | 64 |
18 | CARRIGAN Sara | 60 |
21 | KUPFERNAGEL Hanka | 68 |
24 | SOEDER Christiane | 52 |
25 | LJUNGSKOG Susanne | 57 |
30 | MATUSIAK Bogumiła | 58 |
32 | VALEN Anita | 62 |
34 | GUNNEWIJK Loes | 67 |
36 | HOUVENAGHEL Wendy | 60 |