Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Armstrong
3
58 kgArndt
4
59 kgZabirova
6
65 kgMelchers
7
59 kgThornburn
8
56 kgPučinskaitė
10
54 kgSoeder
11
52 kgPitel
12
52 kgDoppmann
13
55 kgWood
14
56 kgGuderzo
16
54 kgLjungskog
17
57 kgSandig
18
62 kgRuano
20
51 kgCarrigan
21
60 kgMatusiak
24
58 kgVillumsen
29
59 kgTreier
32
62 kgRagažinskienė
34
58 kg
3
58 kgArndt
4
59 kgZabirova
6
65 kgMelchers
7
59 kgThornburn
8
56 kgPučinskaitė
10
54 kgSoeder
11
52 kgPitel
12
52 kgDoppmann
13
55 kgWood
14
56 kgGuderzo
16
54 kgLjungskog
17
57 kgSandig
18
62 kgRuano
20
51 kgCarrigan
21
60 kgMatusiak
24
58 kgVillumsen
29
59 kgTreier
32
62 kgRagažinskienė
34
58 kg
Weight (KG) →
Result →
65
51
3
34
# | Rider | Weight (KG) |
---|---|---|
3 | ARMSTRONG Kristin | 58 |
4 | ARNDT Judith | 59 |
6 | ZABIROVA Zulfiya | 65 |
7 | MELCHERS Mirjam | 59 |
8 | THORNBURN Christine | 56 |
10 | PUČINSKAITĖ Edita | 54 |
11 | SOEDER Christiane | 52 |
12 | PITEL Edwige | 52 |
13 | DOPPMANN Priska | 55 |
14 | WOOD Oenone | 56 |
16 | GUDERZO Tatiana | 54 |
17 | LJUNGSKOG Susanne | 57 |
18 | SANDIG Madeleine | 62 |
20 | RUANO Dori | 51 |
21 | CARRIGAN Sara | 60 |
24 | MATUSIAK Bogumiła | 58 |
29 | VILLUMSEN Linda | 59 |
32 | TREIER Grete | 62 |
34 | RAGAŽINSKIENĖ Daiva | 58 |