Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Armstrong
1
58 kgThornburn
3
56 kgDoppmann
4
55 kgCooke
5
58 kgZabirova
6
65 kgArndt
7
59 kgBoyarskaya
11
67 kgHuříková
12
56 kgVillumsen
14
59 kgLjungskog
15
57 kgSoeder
16
52 kgPitel
18
52 kgGunnewijk
21
67 kgGuderzo
22
54 kgPučinskaitė
23
54 kgMoreno
25
52 kgWood
27
56 kgValsecchi
31
58 kgBrzeźna
32
56 kgPintarič
33
55 kgJungmeier
34
61 kg
1
58 kgThornburn
3
56 kgDoppmann
4
55 kgCooke
5
58 kgZabirova
6
65 kgArndt
7
59 kgBoyarskaya
11
67 kgHuříková
12
56 kgVillumsen
14
59 kgLjungskog
15
57 kgSoeder
16
52 kgPitel
18
52 kgGunnewijk
21
67 kgGuderzo
22
54 kgPučinskaitė
23
54 kgMoreno
25
52 kgWood
27
56 kgValsecchi
31
58 kgBrzeźna
32
56 kgPintarič
33
55 kgJungmeier
34
61 kg
Weight (KG) →
Result →
67
52
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | ARMSTRONG Kristin | 58 |
3 | THORNBURN Christine | 56 |
4 | DOPPMANN Priska | 55 |
5 | COOKE Nicole | 58 |
6 | ZABIROVA Zulfiya | 65 |
7 | ARNDT Judith | 59 |
11 | BOYARSKAYA Natalia | 67 |
12 | HUŘÍKOVÁ Tereza | 56 |
14 | VILLUMSEN Linda | 59 |
15 | LJUNGSKOG Susanne | 57 |
16 | SOEDER Christiane | 52 |
18 | PITEL Edwige | 52 |
21 | GUNNEWIJK Loes | 67 |
22 | GUDERZO Tatiana | 54 |
23 | PUČINSKAITĖ Edita | 54 |
25 | MORENO María Isabel | 52 |
27 | WOOD Oenone | 56 |
31 | VALSECCHI Silvia | 58 |
32 | BRZEŹNA Paulina | 56 |
33 | PINTARIČ Blaža | 55 |
34 | JUNGMEIER Bärbel | 61 |