Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Armstrong
1
58 kgCantele
2
58 kgVillumsen
3
59 kgArndt
4
59 kgSoeder
5
52 kgAntoshina
7
55 kgWhitten
8
67 kgGuderzo
18
54 kgBeveridge
19
55 kgvan Dijk
20
71 kgHouvenaghel
23
60 kgBurchenkova
24
67 kgFahlin
27
63 kgGrassi
29
56 kgPintarič
31
55 kgVysotska
35
55 kgNontasin
36
58 kgBatagelj
40
53 kg
1
58 kgCantele
2
58 kgVillumsen
3
59 kgArndt
4
59 kgSoeder
5
52 kgAntoshina
7
55 kgWhitten
8
67 kgGuderzo
18
54 kgBeveridge
19
55 kgvan Dijk
20
71 kgHouvenaghel
23
60 kgBurchenkova
24
67 kgFahlin
27
63 kgGrassi
29
56 kgPintarič
31
55 kgVysotska
35
55 kgNontasin
36
58 kgBatagelj
40
53 kg
Weight (KG) →
Result →
71
52
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | ARMSTRONG Kristin | 58 |
2 | CANTELE Noemi | 58 |
3 | VILLUMSEN Linda | 59 |
4 | ARNDT Judith | 59 |
5 | SOEDER Christiane | 52 |
7 | ANTOSHINA Tatiana | 55 |
8 | WHITTEN Tara | 67 |
18 | GUDERZO Tatiana | 54 |
19 | BEVERIDGE Julie | 55 |
20 | VAN DIJK Ellen | 71 |
23 | HOUVENAGHEL Wendy | 60 |
24 | BURCHENKOVA Alexandra | 67 |
27 | FAHLIN Emilia | 63 |
29 | GRASSI Giuseppina | 56 |
31 | PINTARIČ Blaža | 55 |
35 | VYSOTSKA Ievgeniia | 55 |
36 | NONTASIN Chanpeng | 58 |
40 | BATAGELJ Polona | 53 |