Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Reusser
1
70 kgvan der Breggen
2
56 kgVollering
3
57 kgAalerud
5
54 kgNiedermaier
6
52 kgLabous
7
54 kgHenderson
8
58 kgDygert
9
66 kgKerbaol
13
57 kgKiesenhofer
17
54 kgEdwards
19
59 kgBaril
20
56 kgCampbell
23
63 kgPeñuela
24
53 kgPaladin
26
59 kgde Marigny-Lagesse
29
60 kgHalbwachs
34
62 kg
1
70 kgvan der Breggen
2
56 kgVollering
3
57 kgAalerud
5
54 kgNiedermaier
6
52 kgLabous
7
54 kgHenderson
8
58 kgDygert
9
66 kgKerbaol
13
57 kgKiesenhofer
17
54 kgEdwards
19
59 kgBaril
20
56 kgCampbell
23
63 kgPeñuela
24
53 kgPaladin
26
59 kgde Marigny-Lagesse
29
60 kgHalbwachs
34
62 kg
Weight (KG) →
Result →
70
52
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | REUSSER Marlen | 70 |
2 | VAN DER BREGGEN Anna | 56 |
3 | VOLLERING Demi | 57 |
5 | AALERUD Katrine | 54 |
6 | NIEDERMAIER Antonia | 52 |
7 | LABOUS Juliette | 54 |
8 | HENDERSON Anna | 58 |
9 | DYGERT Chloé | 66 |
13 | KERBAOL Cédrine | 57 |
17 | KIESENHOFER Anna | 54 |
19 | EDWARDS Ruth | 59 |
20 | BARIL Olivia | 56 |
23 | CAMPBELL Teniel | 63 |
24 | PEÑUELA Diana | 53 |
26 | PALADIN Soraya | 59 |
29 | DE MARIGNY-LAGESSE Lucie | 60 |
34 | HALBWACHS Aurelie | 62 |