Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 85
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Scheuneman
1
75 kgRosseler
2
78 kgMertens
3
67 kgStubbe
4
66 kgDe Vocht
6
78 kgYates
13
73 kgGrosdent
14
74 kgLisabeth
15
75 kgBoucher
20
78 kgSteurs
21
77 kgPauwels
23
65 kgHovelijnck
30
75 kgIsta
31
70 kgDe Schrooder
33
61 kgCappelle
35
76 kgGiling
36
72 kgDockx
48
64 kgMaaskant
49
76 kgSuray
50
67 kg
1
75 kgRosseler
2
78 kgMertens
3
67 kgStubbe
4
66 kgDe Vocht
6
78 kgYates
13
73 kgGrosdent
14
74 kgLisabeth
15
75 kgBoucher
20
78 kgSteurs
21
77 kgPauwels
23
65 kgHovelijnck
30
75 kgIsta
31
70 kgDe Schrooder
33
61 kgCappelle
35
76 kgGiling
36
72 kgDockx
48
64 kgMaaskant
49
76 kgSuray
50
67 kg
Weight (KG) →
Result →
78
61
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | SCHEUNEMAN Niels | 75 |
2 | ROSSELER Sébastien | 78 |
3 | MERTENS Pieter | 67 |
4 | STUBBE Tom | 66 |
6 | DE VOCHT Wim | 78 |
13 | YATES Jeremy | 73 |
14 | GROSDENT William | 74 |
15 | LISABETH Kenny | 75 |
20 | BOUCHER David | 78 |
21 | STEURS Geert | 77 |
23 | PAUWELS Serge | 65 |
30 | HOVELIJNCK Kurt | 75 |
31 | ISTA Kevyn | 70 |
33 | DE SCHROODER Benny | 61 |
35 | CAPPELLE Dieter | 76 |
36 | GILING Bas | 72 |
48 | DOCKX Bart | 64 |
49 | MAASKANT Martijn | 76 |
50 | SURAY Gil | 67 |