Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.4 * weight + 225
This means that on average for every extra kilogram weight a rider loses -2.4 positions in the result.
Cancellara
1
80 kgOmloop
2
78 kgDekkers
3
72 kgDavis
7
73 kgPetrov
9
70 kgRoesems
13
81 kgDe Fauw
19
77 kgEisel
24
74 kgvan Hummel
36
64 kgShpilevsky
37
78 kgWillems
58
67 kgde Kort
73
69 kgWeening
74
68 kgCurvers
79
73 kgScheuneman
84
75 kgSutherland
100
75 kgRogers
101
74 kgDrew
105
72 kg
1
80 kgOmloop
2
78 kgDekkers
3
72 kgDavis
7
73 kgPetrov
9
70 kgRoesems
13
81 kgDe Fauw
19
77 kgEisel
24
74 kgvan Hummel
36
64 kgShpilevsky
37
78 kgWillems
58
67 kgde Kort
73
69 kgWeening
74
68 kgCurvers
79
73 kgScheuneman
84
75 kgSutherland
100
75 kgRogers
101
74 kgDrew
105
72 kg
Weight (KG) →
Result →
81
64
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | CANCELLARA Fabian | 80 |
2 | OMLOOP Geert | 78 |
3 | DEKKERS Hans | 72 |
7 | DAVIS Allan | 73 |
9 | PETROV Evgeni | 70 |
13 | ROESEMS Bert | 81 |
19 | DE FAUW Dimitri | 77 |
24 | EISEL Bernhard | 74 |
36 | VAN HUMMEL Kenny | 64 |
37 | SHPILEVSKY Boris | 78 |
58 | WILLEMS Frederik | 67 |
73 | DE KORT Koen | 69 |
74 | WEENING Pieter | 68 |
79 | CURVERS Roy | 73 |
84 | SCHEUNEMAN Niels | 75 |
100 | SUTHERLAND Rory | 75 |
101 | ROGERS Michael | 74 |
105 | DREW Jamie Peter | 72 |