Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Boonen
1
82 kgVoigt
2
76 kgBoogerd
3
62 kgEeckhout
4
73 kgNuyens
5
68 kgTraksel
6
72 kgVan Hyfte
7
70 kgVanlandschoot
8
67 kgMonfort
10
66 kgPlanckaert
11
70 kgGilbert
12
75 kgMoerenhout
13
74 kgRoesems
14
81 kgArvesen
15
74 kgBrochard
16
68 kgHøj
18
80 kgEisel
19
74 kgvan Hummel
20
64 kgBellotti
21
65 kgPiil
22
65 kgVanthourenhout
25
65 kgBrandt
26
66 kg
1
82 kgVoigt
2
76 kgBoogerd
3
62 kgEeckhout
4
73 kgNuyens
5
68 kgTraksel
6
72 kgVan Hyfte
7
70 kgVanlandschoot
8
67 kgMonfort
10
66 kgPlanckaert
11
70 kgGilbert
12
75 kgMoerenhout
13
74 kgRoesems
14
81 kgArvesen
15
74 kgBrochard
16
68 kgHøj
18
80 kgEisel
19
74 kgvan Hummel
20
64 kgBellotti
21
65 kgPiil
22
65 kgVanthourenhout
25
65 kgBrandt
26
66 kg
Weight (KG) →
Result →
82
62
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | VOIGT Jens | 76 |
3 | BOOGERD Michael | 62 |
4 | EECKHOUT Niko | 73 |
5 | NUYENS Nick | 68 |
6 | TRAKSEL Bobbie | 72 |
7 | VAN HYFTE Paul | 70 |
8 | VANLANDSCHOOT James | 67 |
10 | MONFORT Maxime | 66 |
11 | PLANCKAERT Jo | 70 |
12 | GILBERT Philippe | 75 |
13 | MOERENHOUT Koos | 74 |
14 | ROESEMS Bert | 81 |
15 | ARVESEN Kurt-Asle | 74 |
16 | BROCHARD Laurent | 68 |
18 | HØJ Frank | 80 |
19 | EISEL Bernhard | 74 |
20 | VAN HUMMEL Kenny | 64 |
21 | BELLOTTI Francesco | 65 |
22 | PIIL Jakob Storm | 65 |
25 | VANTHOURENHOUT Sven | 65 |
26 | BRANDT Christophe | 66 |