Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kittel
1
82 kgGreipel
2
80 kgBos
3
77 kgCavendish
4
70 kgBoom
5
75 kgWagner
6
75 kgLudvigsson
7
76 kgKreder
8
70 kgJarc
9
87 kgFenn
10
79 kgvan Hummel
11
64 kgDevenyns
12
65 kgSerov
13
77 kgHenderson
14
75 kgGołaś
15
65 kgWyss
16
65 kgVan Asbroeck
17
72 kgVon Hoff
18
70 kgVeelers
19
75 kgEichler
20
78 kgBol
21
71 kgVan Staeyen
22
62 kg
1
82 kgGreipel
2
80 kgBos
3
77 kgCavendish
4
70 kgBoom
5
75 kgWagner
6
75 kgLudvigsson
7
76 kgKreder
8
70 kgJarc
9
87 kgFenn
10
79 kgvan Hummel
11
64 kgDevenyns
12
65 kgSerov
13
77 kgHenderson
14
75 kgGołaś
15
65 kgWyss
16
65 kgVan Asbroeck
17
72 kgVon Hoff
18
70 kgVeelers
19
75 kgEichler
20
78 kgBol
21
71 kgVan Staeyen
22
62 kg
Weight (KG) →
Result →
87
62
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | GREIPEL André | 80 |
3 | BOS Theo | 77 |
4 | CAVENDISH Mark | 70 |
5 | BOOM Lars | 75 |
6 | WAGNER Robert | 75 |
7 | LUDVIGSSON Tobias | 76 |
8 | KREDER Raymond | 70 |
9 | JARC Blaž | 87 |
10 | FENN Andrew | 79 |
11 | VAN HUMMEL Kenny | 64 |
12 | DEVENYNS Dries | 65 |
13 | SEROV Alexander | 77 |
14 | HENDERSON Gregory | 75 |
15 | GOŁAŚ Michał | 65 |
16 | WYSS Danilo | 65 |
17 | VAN ASBROECK Tom | 72 |
18 | VON HOFF Steele | 70 |
19 | VEELERS Tom | 75 |
20 | EICHLER Markus | 78 |
21 | BOL Jetse | 71 |
22 | VAN STAEYEN Michael | 62 |