Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kittel
1
82 kgGilbert
2
75 kgMeersman
3
63 kgFarrar
4
73 kgvan Baarle
5
78 kgTimmer
6
77 kgJans
7
68 kgLammertink
8
68 kgMerlier
9
76 kgvan Goethem
10
77 kgVan Staeyen
11
62 kgGroenewegen
12
70 kgvan Emden
13
78 kgAriesen
14
70 kgDebusschere
15
77 kgFlens
16
82 kgWellens
17
71 kgVermeersch
18
68 kg
1
82 kgGilbert
2
75 kgMeersman
3
63 kgFarrar
4
73 kgvan Baarle
5
78 kgTimmer
6
77 kgJans
7
68 kgLammertink
8
68 kgMerlier
9
76 kgvan Goethem
10
77 kgVan Staeyen
11
62 kgGroenewegen
12
70 kgvan Emden
13
78 kgAriesen
14
70 kgDebusschere
15
77 kgFlens
16
82 kgWellens
17
71 kgVermeersch
18
68 kg
Weight (KG) →
Result →
82
62
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | GILBERT Philippe | 75 |
3 | MEERSMAN Gianni | 63 |
4 | FARRAR Tyler | 73 |
5 | VAN BAARLE Dylan | 78 |
6 | TIMMER Albert | 77 |
7 | JANS Roy | 68 |
8 | LAMMERTINK Steven | 68 |
9 | MERLIER Tim | 76 |
10 | VAN GOETHEM Brian | 77 |
11 | VAN STAEYEN Michael | 62 |
12 | GROENEWEGEN Dylan | 70 |
13 | VAN EMDEN Jos | 78 |
14 | ARIESEN Johim | 70 |
15 | DEBUSSCHERE Jens | 77 |
16 | FLENS Rick | 82 |
17 | WELLENS Tim | 71 |
18 | VERMEERSCH Gianni | 68 |