Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Greipel
1
80 kgHofland
2
71 kgLampaert
3
75 kgTheuns
4
72 kgvan Poppel
5
82 kgKluge
6
83 kgCampenaerts
7
68 kgVan Staeyen
8
62 kgKeizer
9
72 kgKreder
10
70 kgWaeytens
11
67 kgHenderson
12
75 kgDebusschere
13
77 kgDe Bie
14
65 kgSinkeldam
15
77 kgSchwarzmann
16
69 kgVanbilsen
17
73 kgCiolek
18
75 kgWiśniowski
19
78 kgDempster
20
77 kgColedan
21
83 kgLeukemans
22
67 kgThwaites
23
71 kg
1
80 kgHofland
2
71 kgLampaert
3
75 kgTheuns
4
72 kgvan Poppel
5
82 kgKluge
6
83 kgCampenaerts
7
68 kgVan Staeyen
8
62 kgKeizer
9
72 kgKreder
10
70 kgWaeytens
11
67 kgHenderson
12
75 kgDebusschere
13
77 kgDe Bie
14
65 kgSinkeldam
15
77 kgSchwarzmann
16
69 kgVanbilsen
17
73 kgCiolek
18
75 kgWiśniowski
19
78 kgDempster
20
77 kgColedan
21
83 kgLeukemans
22
67 kgThwaites
23
71 kg
Weight (KG) →
Result →
83
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GREIPEL André | 80 |
2 | HOFLAND Moreno | 71 |
3 | LAMPAERT Yves | 75 |
4 | THEUNS Edward | 72 |
5 | VAN POPPEL Danny | 82 |
6 | KLUGE Roger | 83 |
7 | CAMPENAERTS Victor | 68 |
8 | VAN STAEYEN Michael | 62 |
9 | KEIZER Martijn | 72 |
10 | KREDER Raymond | 70 |
11 | WAEYTENS Zico | 67 |
12 | HENDERSON Gregory | 75 |
13 | DEBUSSCHERE Jens | 77 |
14 | DE BIE Sean | 65 |
15 | SINKELDAM Ramon | 77 |
16 | SCHWARZMANN Michael | 69 |
17 | VANBILSEN Kenneth | 73 |
18 | CIOLEK Gerald | 75 |
19 | WIŚNIOWSKI Łukasz | 78 |
20 | DEMPSTER Zak | 77 |
21 | COLEDAN Marco | 83 |
22 | LEUKEMANS Björn | 67 |
23 | THWAITES Scott | 71 |