Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Emden
1
78 kgKreder
2
71 kgvan den Brand
3
71 kgPhinney
4
82 kgKüng
6
83 kgKittel
7
82 kgKluge
8
83 kgGroenewegen
9
70 kgDe Bie
10
65 kgDupont
11
72 kgVanmarcke
12
77 kgGreipel
13
80 kgTerpstra
14
75 kgMerlier
15
76 kgMoser
16
64 kgArndt
17
77.5 kgvan Aert
18
78 kgHoward
19
72 kg
1
78 kgKreder
2
71 kgvan den Brand
3
71 kgPhinney
4
82 kgKüng
6
83 kgKittel
7
82 kgKluge
8
83 kgGroenewegen
9
70 kgDe Bie
10
65 kgDupont
11
72 kgVanmarcke
12
77 kgGreipel
13
80 kgTerpstra
14
75 kgMerlier
15
76 kgMoser
16
64 kgArndt
17
77.5 kgvan Aert
18
78 kgHoward
19
72 kg
Weight (KG) →
Result →
83
64
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EMDEN Jos | 78 |
2 | KREDER Wesley | 71 |
3 | VAN DEN BRAND Twan | 71 |
4 | PHINNEY Taylor | 82 |
6 | KÜNG Stefan | 83 |
7 | KITTEL Marcel | 82 |
8 | KLUGE Roger | 83 |
9 | GROENEWEGEN Dylan | 70 |
10 | DE BIE Sean | 65 |
11 | DUPONT Timothy | 72 |
12 | VANMARCKE Sep | 77 |
13 | GREIPEL André | 80 |
14 | TERPSTRA Niki | 75 |
15 | MERLIER Tim | 76 |
16 | MOSER Moreno | 64 |
17 | ARNDT Nikias | 77.5 |
18 | VAN AERT Wout | 78 |
19 | HOWARD Leigh | 72 |