Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Groenewegen
1
70 kgHofland
2
71 kgRoglič
3
65 kgGreipel
4
80 kgWalscheid
5
90 kgKittel
6
82 kgVermeltfoort
7
85 kgSchachmann
8
71 kgKragh Andersen
9
73 kgDupont
10
72 kgRoosen
11
78 kgIsta
12
70 kgVan Lerberghe
13
83 kgKämna
14
65 kgLaporte
15
76 kgWürtz Schmidt
16
70 kgMerlier
17
76 kgAerts
18
72 kgLooij
19
75 kgde Kleijn
20
68 kgKreder
21
70 kgSieberg
22
80 kg
1
70 kgHofland
2
71 kgRoglič
3
65 kgGreipel
4
80 kgWalscheid
5
90 kgKittel
6
82 kgVermeltfoort
7
85 kgSchachmann
8
71 kgKragh Andersen
9
73 kgDupont
10
72 kgRoosen
11
78 kgIsta
12
70 kgVan Lerberghe
13
83 kgKämna
14
65 kgLaporte
15
76 kgWürtz Schmidt
16
70 kgMerlier
17
76 kgAerts
18
72 kgLooij
19
75 kgde Kleijn
20
68 kgKreder
21
70 kgSieberg
22
80 kg
Weight (KG) →
Result →
90
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | GROENEWEGEN Dylan | 70 |
2 | HOFLAND Moreno | 71 |
3 | ROGLIČ Primož | 65 |
4 | GREIPEL André | 80 |
5 | WALSCHEID Max | 90 |
6 | KITTEL Marcel | 82 |
7 | VERMELTFOORT Coen | 85 |
8 | SCHACHMANN Maximilian | 71 |
9 | KRAGH ANDERSEN Søren | 73 |
10 | DUPONT Timothy | 72 |
11 | ROOSEN Timo | 78 |
12 | ISTA Kevyn | 70 |
13 | VAN LERBERGHE Bert | 83 |
14 | KÄMNA Lennard | 65 |
15 | LAPORTE Christophe | 76 |
16 | WÜRTZ SCHMIDT Mads | 70 |
17 | MERLIER Tim | 76 |
18 | AERTS Toon | 72 |
19 | LOOIJ André | 75 |
20 | DE KLEIJN Arvid | 68 |
21 | KREDER Raymond | 70 |
22 | SIEBERG Marcel | 80 |