Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Groenewegen
1
70 kgEwan
2
69 kgLiepiņš
3
67 kgDebusschere
4
77 kgVallée
5
79 kgTeunissen
6
73 kgCapiot
7
69 kgReinders
8
78.1 kgvan der Kooij
9
70 kgKrul
10
68 kgWalscheid
12
90 kgBol
13
83 kgMenten
14
68 kgTimmermans
15
72 kgvan Sintmaartensdijk
16
77 kgVan Staeyen
17
62 kgWürtz Schmidt
18
70 kgDe Buyst
19
72 kgJansen
21
83 kgde Kleijn
22
68 kgAristi
23
72 kg
1
70 kgEwan
2
69 kgLiepiņš
3
67 kgDebusschere
4
77 kgVallée
5
79 kgTeunissen
6
73 kgCapiot
7
69 kgReinders
8
78.1 kgvan der Kooij
9
70 kgKrul
10
68 kgWalscheid
12
90 kgBol
13
83 kgMenten
14
68 kgTimmermans
15
72 kgvan Sintmaartensdijk
16
77 kgVan Staeyen
17
62 kgWürtz Schmidt
18
70 kgDe Buyst
19
72 kgJansen
21
83 kgde Kleijn
22
68 kgAristi
23
72 kg
Weight (KG) →
Result →
90
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GROENEWEGEN Dylan | 70 |
2 | EWAN Caleb | 69 |
3 | LIEPIŅŠ Emīls | 67 |
4 | DEBUSSCHERE Jens | 77 |
5 | VALLÉE Boris | 79 |
6 | TEUNISSEN Mike | 73 |
7 | CAPIOT Amaury | 69 |
8 | REINDERS Elmar | 78.1 |
9 | VAN DER KOOIJ Bas | 70 |
10 | KRUL Stef | 68 |
12 | WALSCHEID Max | 90 |
13 | BOL Cees | 83 |
14 | MENTEN Milan | 68 |
15 | TIMMERMANS Justin | 72 |
16 | VAN SINTMAARTENSDIJK Daan | 77 |
17 | VAN STAEYEN Michael | 62 |
18 | WÜRTZ SCHMIDT Mads | 70 |
19 | DE BUYST Jasper | 72 |
21 | JANSEN Amund Grøndahl | 83 |
22 | DE KLEIJN Arvid | 68 |
23 | ARISTI Mikel | 72 |