Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kooij
1
72 kgViviani
2
67 kgVan Poucke
3
68 kgde Kleijn
4
68 kgWelsford
5
79 kgLauk
6
69 kgMareczko
8
67 kgKopecký
9
73 kgTurner
10
74 kgWelten
11
81 kgvan Schip
12
84 kgSalby
13
68 kgDesal
14
76 kgvan Sintmaartensdijk
15
77 kgvan Dijke
16
74 kgvan Dijke
18
74 kgde Lange
20
58 kgBaak
21
73 kg
1
72 kgViviani
2
67 kgVan Poucke
3
68 kgde Kleijn
4
68 kgWelsford
5
79 kgLauk
6
69 kgMareczko
8
67 kgKopecký
9
73 kgTurner
10
74 kgWelten
11
81 kgvan Schip
12
84 kgSalby
13
68 kgDesal
14
76 kgvan Sintmaartensdijk
15
77 kgvan Dijke
16
74 kgvan Dijke
18
74 kgde Lange
20
58 kgBaak
21
73 kg
Weight (KG) →
Result →
84
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | VIVIANI Elia | 67 |
3 | VAN POUCKE Aaron | 68 |
4 | DE KLEIJN Arvid | 68 |
5 | WELSFORD Sam | 79 |
6 | LAUK Karl Patrick | 69 |
8 | MARECZKO Jakub | 67 |
9 | KOPECKÝ Tomáš | 73 |
10 | TURNER Ben | 74 |
11 | WELTEN Bram | 81 |
12 | VAN SCHIP Jan-Willem | 84 |
13 | SALBY Alexander | 68 |
14 | DESAL Ceriel | 76 |
15 | VAN SINTMAARTENSDIJK Daan | 77 |
16 | VAN DIJKE Tim | 74 |
18 | VAN DIJKE Mick | 74 |
20 | DE LANGE Thijs | 58 |
21 | BAAK Jord | 73 |