Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kooij
1
72 kgViviani
2
67 kgMareczko
3
67 kgVan Poucke
4
68 kgWelsford
5
79 kgde Kleijn
6
68 kgSalby
7
68 kgLauk
8
69 kgvan Sintmaartensdijk
9
77 kgWelten
11
81 kgFretin
12
70 kgvan Dijke
13
74 kgKopecký
14
73 kgBouts
15
62 kgTurner
16
74 kgvan Schip
17
84 kgDesal
18
76 kgvan Sintmaartensdijk
19
77 kgvan Dijke
20
74 kgHavik
22
66 kgde Lange
24
58 kgvan der Meer
25
82 kgBaak
26
73 kg
1
72 kgViviani
2
67 kgMareczko
3
67 kgVan Poucke
4
68 kgWelsford
5
79 kgde Kleijn
6
68 kgSalby
7
68 kgLauk
8
69 kgvan Sintmaartensdijk
9
77 kgWelten
11
81 kgFretin
12
70 kgvan Dijke
13
74 kgKopecký
14
73 kgBouts
15
62 kgTurner
16
74 kgvan Schip
17
84 kgDesal
18
76 kgvan Sintmaartensdijk
19
77 kgvan Dijke
20
74 kgHavik
22
66 kgde Lange
24
58 kgvan der Meer
25
82 kgBaak
26
73 kg
Weight (KG) →
Result →
84
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | VIVIANI Elia | 67 |
3 | MARECZKO Jakub | 67 |
4 | VAN POUCKE Aaron | 68 |
5 | WELSFORD Sam | 79 |
6 | DE KLEIJN Arvid | 68 |
7 | SALBY Alexander | 68 |
8 | LAUK Karl Patrick | 69 |
9 | VAN SINTMAARTENSDIJK Roel | 77 |
11 | WELTEN Bram | 81 |
12 | FRETIN Milan | 70 |
13 | VAN DIJKE Mick | 74 |
14 | KOPECKÝ Tomáš | 73 |
15 | BOUTS Jordy | 62 |
16 | TURNER Ben | 74 |
17 | VAN SCHIP Jan-Willem | 84 |
18 | DESAL Ceriel | 76 |
19 | VAN SINTMAARTENSDIJK Daan | 77 |
20 | VAN DIJKE Tim | 74 |
22 | HAVIK Yoeri | 66 |
24 | DE LANGE Thijs | 58 |
25 | VAN DER MEER Nick | 82 |
26 | BAAK Jord | 73 |