Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kooij
1
72 kgvan Dijke
2
74 kgKopecký
3
73 kgvan Sintmaartensdijk
4
77 kgFretin
5
70 kgSheffield
6
73 kgHessmann
7
78 kgvan Dijke
8
74 kgBittner
10
73 kgBraet
11
68 kgLoohuis
12
82 kgEddy
13
79 kgWyseure
15
70 kgKroonen
16
79 kgPahlke
18
71 kgBaak
19
73 kgBoven
20
62 kg
1
72 kgvan Dijke
2
74 kgKopecký
3
73 kgvan Sintmaartensdijk
4
77 kgFretin
5
70 kgSheffield
6
73 kgHessmann
7
78 kgvan Dijke
8
74 kgBittner
10
73 kgBraet
11
68 kgLoohuis
12
82 kgEddy
13
79 kgWyseure
15
70 kgKroonen
16
79 kgPahlke
18
71 kgBaak
19
73 kgBoven
20
62 kg
Weight (KG) →
Result →
82
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | VAN DIJKE Mick | 74 |
3 | KOPECKÝ Tomáš | 73 |
4 | VAN SINTMAARTENSDIJK Roel | 77 |
5 | FRETIN Milan | 70 |
6 | SHEFFIELD Magnus | 73 |
7 | HESSMANN Michel | 78 |
8 | VAN DIJKE Tim | 74 |
10 | BITTNER Pavel | 73 |
11 | BRAET Vito | 68 |
12 | LOOHUIS Lars | 82 |
13 | EDDY Patrick | 79 |
15 | WYSEURE Joran | 70 |
16 | KROONEN Max | 79 |
18 | PAHLKE Jasper Levi | 71 |
19 | BAAK Jord | 73 |
20 | BOVEN Lars | 62 |