Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 11
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Eekhoff
1
75 kgVandevelde
2
69 kgKonychev
3
76 kgRasenberg
4
78 kgKooij
5
72 kgEdmondson
6
75 kgWelsford
7
79 kgLindeman
8
69 kgVermeulen
9
64 kgZijlaard
10
73 kgVan Poucke
11
68 kgAbma
12
86 kgBol
13
83 kgde Kleijn
14
68 kgvan Dijke
15
74 kgMalucelli
16
68 kgvan Emden
17
78 kgEddy
18
79 kgPeñalver
19
67 kgVandenbranden
20
74 kg
1
75 kgVandevelde
2
69 kgKonychev
3
76 kgRasenberg
4
78 kgKooij
5
72 kgEdmondson
6
75 kgWelsford
7
79 kgLindeman
8
69 kgVermeulen
9
64 kgZijlaard
10
73 kgVan Poucke
11
68 kgAbma
12
86 kgBol
13
83 kgde Kleijn
14
68 kgvan Dijke
15
74 kgMalucelli
16
68 kgvan Emden
17
78 kgEddy
18
79 kgPeñalver
19
67 kgVandenbranden
20
74 kg
Weight (KG) →
Result →
86
64
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | EEKHOFF Nils | 75 |
2 | VANDEVELDE Yentl | 69 |
3 | KONYCHEV Alexander | 76 |
4 | RASENBERG Martijn | 78 |
5 | KOOIJ Olav | 72 |
6 | EDMONDSON Alex | 75 |
7 | WELSFORD Sam | 79 |
8 | LINDEMAN Bert-Jan | 69 |
9 | VERMEULEN Emiel | 64 |
10 | ZIJLAARD Maikel | 73 |
11 | VAN POUCKE Aaron | 68 |
12 | ABMA Elmar | 86 |
13 | BOL Cees | 83 |
14 | DE KLEIJN Arvid | 68 |
15 | VAN DIJKE Tim | 74 |
16 | MALUCELLI Matteo | 68 |
17 | VAN EMDEN Jos | 78 |
18 | EDDY Patrick | 79 |
19 | PEÑALVER Manuel | 67 |
20 | VANDENBRANDEN Noah | 74 |